1. Well-ordering Principle for the integers and Least-upper-bound Axiom

for the reals.

Here we take for granted the validity of these two statements:

(a) Well-ordering Principle for the integers (WOPI).
Let S be a non-empty subset of N. S has a least element.

(b) Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of R. Suppose A is bounded above in IR.
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With the help of the Least-upper-bound Axiom for the reals, we are going to establish

the validity of two heuristically obvious statements:

(a) Unboundedness of the natural number system in the reals (UNR).

N is not bounded above in IR.

(b) Archimedean Principle for the reals (AP).
For any € > 0, there exists some N € N\{0} such that Ne > 1.

The Well-ordering Principle for integers will be used later on.



2. Unboundedness of the natural number system in the reals (UNR).

N is not bounded above in IR.

Proof. [Proof-by-contradiction argument. |

Suppose it were true that N was bounded above in R.

Note that 0 € N. Then N = 0.

Then, by the Least-upper-bound Axiom, N would have a supremum in R. We denote this

number by o.
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3. Archimedean Principle for the reals (AP).
For any € > 0, there exists some N € N\{0} such that Ne > 1.
Proof. Pick any € > 0.

[What do we want? Name an appropriate positive integer N which satisfies Ne > 1.

1 1 1
So ask: 1-& > 1?7 26 > 17 3¢ > 1?7 ... Or how about — < 17 — <27 — <37 ... |
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Corollary to (AP). (Re-formulations of the Archimedean Principle.)

Each of the statements below is logically equivalent to each other

(1) For any € > 0, there exists some N € N\{0} such that Ne > 1.

1
(2) For any € > 0, there exists some N € N\{0} such that ~ <€

(3) For any K > 0, there exists some N € N\{0} such that N > K.
Remark. In fact (UNR) is logically equivalent to (AP). (Proof?)
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4. Dense-ness of the rationals and irrationals in the reals.
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With the help of all the above statements, we establish the validity of some heuristically
obvious statements about the rational numbers and irrational numbers.

Theorem (D1). (‘Dense-ness’ of posﬂ;we rational numbers amongst pos-

itive real numbers.)

Let a, B € R. Suppose B > a > 0. Then there exists some r € Q such that

a<r<p. Ire@?

0- s > nN~—~—> O . % .
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Remark.  Strictly between any two distinct positive real numbers, there is at least

one positive rational number.

Corollary (D2). (‘Dense-ness’ of the rationals amongst the reals.)

Let o, B € R. Suppose oo < 3. Then there exists some r € Q such that o <1 < f.

Corollary (D3). (‘Dense-ness’ of the irrationals 'amongst the reals.)

Let a, 5 € R. Suppose v < B. Then there exists some v € IR\Q such that o < u < ﬁ
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The phenomena described in Corollary (D2) and Corollary (D3) are known as dense-ness
in the reals.

Definition. (Dense-ness in the reals.)
Let D be a subset of R.

D is said to be dense in R if every open interval in R contains some element of D.

Corollary (D4).
Q is dense in R.
IR\Q is dense in R.

Remark. Not every ‘important’ subset of R has such a property: for instance, neither
N nor Z is dense in IR.
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5. Proof of Theorem (D1).
Let a, 8 € R. Suppose 8 > a > 0.

[What do we want? Name an appropriate rational number which lies strictly between

and .

Imagine you may choose some

| [dea.
positive integer and then will mark
on the positive half-line all the points 1n
{k/N | k €N}
Which N will you choose so as to definitely
guarantee that at least one such point, say,
M /N, satisfies o) < <67
This N needs be large, but how large?
What if we want (o) < (M + 1)/N <[Bas
well?]
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