
MATH1050 The number e

1. What is the number e?

You might have been told that e ‘is’ the limit lim
n→∞

(
1 +

1

n

)n

.

Or that e ‘is’ the limit lim
n→∞

n∑
k=0

1

k!
.

But there are two questions:

(A) We are aware that some infinite sequences converge to limits and some do not. Does the infinite sequence{(
1 +

1

n

)n}∞

n=2

converge to any limit at all? Does the infinite sequence
{

n∑
k=0

1

k!

}∞

n=2

converge to any limit

at all?
(B) Even if both of these infinite sequences converge, do they have the same limit (which, as we have been told,

is the number e)?
(The two infinite sequences do not look ‘alike’; nothing suggests they have to converge to the same limit.)

This is the answer to both Question (A) and Question (B):

Theorem (1).

Let {an}∞n=2, {bn}∞n=2, {cn}∞n=2 be infinite sequences in R defined respectively by

an =

(
1 +

1

n

)n

, bn =

n∑
k=0

1

k!
, cn =

(
1− 1

2n

) n∑
k=0

1

k!
for any n ∈ N\{0, 1}.

Then {an}∞n=2, {bn}∞n=2, {cn}∞n=2 converge to the same limit.

Proof of Theorem (1). Postponed; we will Lemma (2), Lemma (3) and Lemma (4) as ‘stepping stones’.

Remark on notations. From now on, {an}n=2, {bn}∞n=2, {cn}∞n=2 will refer to the same infinite sequences
defined in the statement of Theorem (1).

2. Bounded-Monotone Theorem and Sandwich Rule.
The crucial tools used in the proof of Theorem (1) are two results that you have learnt in your calculus course.

Bounded-Monotone Theorem (BMT).

Let {xn}∞n=0 be an infinite sequence in R.

Suppose {xn}∞n=0 is increasing. Further suppose {xn}∞n=0 is bounded above in R, (say, by β).

Then {xn}∞n=0 is convergent in R. (Moreover, lim
n→∞

xn ≤ β.)

Sandwich Rule (SR).

Let {un}∞n=0, {vn}∞n=0, {wn}∞n=0 be infinite sequences in R.

Suppose that for any n ∈ N, un ≤ vn ≤ wn. Further suppose that {un}∞n=0, {wn}∞n=0 converge to the same limit,
say, ℓ in R.
Then {vn}∞n=0 also converges to ℓ.
Remark. You will learn the proofs of these two results in your analysis course.

3. Lemma (2). (Properties of {bn}∞n=2.)

(a) {bn}∞n=2 is strictly increasing.

(b) {bn}∞n=2 is bounded above by 3.

(c) lim
n→∞

bn exists in R, and lim
n→∞

bn ≤ 3.

Remark on notation. For the moment, we write eb = lim
n→∞

bn.

Proof of Lemma (2).
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(a) Let n ≥ 2. We have bn+1 − bn =
1

(n+ 1)!
≥ 0. Hence bn+1 ≥ bn.

It follows that {bn}∞n=0 is increasing.

(b) Let n ≥ 2.

bn = 1 + 1 +

n∑
k=2

1

k!
≤ 1 + 1 +

n∑
k=2

1

2k−1
= 2 +

1

2
· 1− 1/2n−1

1− 1/2
= 2 +

(
1− 1

2n−1

)
< 3

Therefore {bn}∞n=2 is bounded above by 3.

(c) {bn}∞n=2 is strictly increasing.
{bn}∞n=2 is also bounded above by 3.
Then by (BMT), {bn}∞n=2 converges in R, and lim

n→∞
bn ≤ 3.

4. Lemma (3). (Properties of {an}∞n=2.)

(a) For any n ∈ N\{0, 1}, an = 2 +

n∑
k=2

1

k!
· 1 ·

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− k − 1

n

)
< bn.

(b) {an}∞n=2 is bounded above by 3.

(c) {an}∞n=2 is strictly increasing.

(d) lim
n→∞

an exists in R, and lim
n→∞

an ≤ 3.

Remark on notation. For the moment, we write ea = lim
n→∞

an.

Proof of Lemma (3).

(a) Let n ≥ 2.

an =

(
1 +

1

n

)n

= 1 + n · 1
n
+

n∑
k=2

n(n− 1)(n− 2) · ... · (n− k + 1)

k!
· 1

nk

= 2 +

n∑
k=2

1

k!
· 1 ·

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− k − 1

n

)
< 2 +

n∑
k=2

1

k!
= ... = bn

(b) Let n ≥ 2. We have an < bn < 3. Therefore {an}∞n=2 is bounded above by 3.

(c) Let n ≥ 2. Note that an > 0 and an+1 > 0.

an+1

an
= ... =

(
1 +

1

n+ 1

)[
(n+ 2)n

(n+ 1)2

]n
=

(
1 +

1

n+ 1

)[
1− 1

(n+ 1)2

]n
>

(
1 +

1

n+ 1

)
·
[
1− n

(n+ 1)2

]
by Bernoulli’s Inequality

= ... = 1 +
1

(n+ 1)3
≥ 1.

Hence an+1 > an.
It follows that {an}∞n=2 is strictly increasing.

(d) {an}∞n=2 is strictly increasing.
{an}∞n=2 is also bounded above by 3.
Then by (BMT), {an}∞n=2 converges in R, and lim

n→∞
an ≤ 3.

5. Lemma (4). (Properties of {cn}∞n=2.)

(a) For any n ∈ N\{0, 1, 2, 3}, cn < an < bn.

(b) lim
n→∞

cn exists, and lim
n→∞

cn = eb.

2



Proof of Lemma (4).

(a) Let n ≥ 4. We have already proved an < bn.

an = 2 +

n∑
k=2

1

k!
· 1 ·

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− k − 1

n

)

≥ 2 +

n∑
k=2

1

k!
·
[
1−

(
1

n
+

2

n
+ · · ·+ k − 1

n

)]
by Weierstrass’ Product Inequality

= 2 +

n∑
k=2

1

k!
·
[
1− (k − 1)k

2n

]

= 2 +

n∑
k=2

1

k!
− 1

2n

n∑
k=2

(k − 1)k

k!
= 2 +

n∑
k=2

1

k!
− 1

2n

n∑
k=2

1

(k − 2)!

= bn − 1

2n
bn−2

> bn − 1

2n
bn =

(
1− 1

2n

)
bn = cn

(b) lim
n→∞

(
1− 1

2n

)
exists and is 1.

Also, lim
n→∞

bn exists and is eb.

Then lim
n→∞

cn exists and is 1 · eb = eb.

6. Proof of Theorem (1).
By Lemma (4), for any n ∈ N\{0, 1, 2, 3}, cn < an < bn.
By Lemma (2), Lemma (3) and Lemma (4), the limits lim

n→∞
an, lim

n→∞
bn, lim

n→∞
cn exist. Their respective values are

ea, eb, eb.
Then by (SR), we have eb ≤ ea ≤ eb. Hence ea = eb.

7. Definition. (The number e.)

We define the real number e to be the common value of the limits lim
n→∞

(
1 +

1

n

)n

and lim
n→∞

n∑
k=0

1

k!
.

Remark. The value of e is 2.718281828459 · · · .
Further remark. Everything above relies on the validity of the Bounded-Monotone Theorem. The Bounded-
Monotone Theorem is a consequence of the Least-upper-bound Axiom, which is some fundamental assumption
on the nature of the real number system. (Refer to the Handout Monotonicity and boundedness for infinite
sequences of real numbers.)

8. Appendix 1: Beyond the number e and towards the definition of the exponential function.

You might have been told ‘ lim
n→∞

(
1 +

2

n

)n

= e2’, ‘ lim
n→∞

n∑
k=0

3k

k!
= e3’, et cetera.

What ‘ lim
n→∞

(
1 +

2

n

)n

= e2’ telling you is :

The infinite sequence
{(

1 +
2

n

)n}∞

n=2

converges in R, and its limit is equal to e2 (which is the square of the

number e as we have defined).

But something seems to be wrong:

Even though lim
n→∞

(
1 +

2

n

)n

may exist, it is not immediately apparent why the equality

lim
n→∞

(
1 +

2

n

)n

= lim
n→∞

(
1 +

1

n

)2n
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should hold.

As for ‘ lim
n→∞

n∑
k=0

3k

k!
= e3’, what it is tell you is:

The infinite sequence
{

n∑
k=0

3k

k!

}∞

n=2

converges in R, and its limit is equal to e3 (which is the cube of the

number e as we have defined).

Again something seems to be wrong:

Even though lim
n→∞

n∑
k=0

3k

k!
may exist, it is not immediately apparent why the equality

lim
n→∞

n∑
k=0

3k

k!
= lim

n→∞

(
n∑

k=0

1

k!

)3

should hold.

So why are these statements true? They are the consequences of Theorem (5) and Theorem (6).

Theorem (5).
Let α be a positive real number. Let {an}∞n=2, {bn}∞n=2, {cn}∞n=2 be infinite sequences in R defined respectively by

an =
(
1 +

α

n

)n
, bn =

n∑
k=0

αk

k!
, cn =

(
1− α2

2n

) n∑
k=0

αk

k!
for any n ∈ N\{0, 1}.

Then {an}∞n=2, {bn}∞n=2, {cn}∞n=2 converge to the same limit.

Theorem (6).

Let σ, τ be positive real numbers. Define un =

n∑
k=0

σk

k!
, vn =

n∑
k=0

τk

k!
, wn =

n∑
k=0

(σ + τ)k

k!
for each n ∈ N. The

statements below hold:

(a) For any n ∈ N, the inequality wn ≤ unvn ≤ w2n holds.

(b) lim
n→∞

wn =
(
lim

n→∞
un

)(
lim
n→∞

vn

)
.

Corollary (7).

For any positive integer α, the equality lim
n→∞

n∑
k=0

αk

k!
= eα holds.

We are going to give an outline of the argument for these results. The detail will be left as a hard exercise on
inequalities and limits.

(I) Proof of Theorem (5). First prove Lemma (5a), Lemma (5b) and Lemma (5c) as ‘stepping stones’.
Then imitate the argument for Theorem (1).
Remark on notations. From now on, {an}n=2, {bn}∞n=2, {cn}∞n=2 will refer to the same infinite sequences
defined in the statement of Theorem (5).

(II) Lemma (5b). (Properties of {bn}∞n=2.)

(a) {bn}∞n=2 is strictly increasing.

(b) Suppose N is an integer greater than α and greater than 3. Then bn ≤ bN−1 +
αN

(1− α/N) · (N !)
.

(c) {bn}∞n=2 is bounded above in R.
(d) lim

n→∞
bn exists in R.

Remark on notation. For the moment, we write Eb = lim
n→∞

bn.

Proof of Lemma (5b). Exercise. (Imitate what has been done in the proof of Lemma (2).)

4



(III) Lemma (5a). (Properties of {an}∞n=2.)

(a) For any n ∈ J2,+∞),

an = 1 + α+

n∑
k=2

αk

k!
· 1 ·

(
1− 1

n

)(
1− 2

n

)
· ... ·

(
1− k − 1

n

)
< bn.

(b) {an}∞n=2 is bounded above in R.
(c) {an}∞n=2 is strictly increasing.
(d) lim

n→∞
an exists in R.

Remark on notation. For the moment, we write Ea = lim
n→∞

an.

Proof of Lemma (5a). Exercise. (Imitate what has been done in the proof of Lemma (3).)
(IV) Lemma (5c). (Properties of {cn}∞n=2.)

(a) For any n ∈ J2,+∞), if n ≥ α2

2
then cn < an < bn.

(b) lim
n→∞

cn exists in R, and is equal to Eb.

Proof of Lemma (5c). Exercise. (Imitate what has been done in the proof of Lemma (4).)
(V) Completion of the proof of Theorem (5).

By Lemma (5c), for any natural number n greater than α2

2
+ 2, the inequality cn < an < bn holds.

By Lemma (5a), Lemma (5b) and Lemma (5c), the limits lim
n→∞

an, lim
n→∞

bn, lim
n→∞

cn exist. Their respective

values are Ea, Eb, Eb.
Then by (SR), we have Eb ≤ Ea ≤ Eb. Hence Ea = Eb.

(VI) Up to this point what we can say for sure is that for every positive real number α, it makes sense to talk

about the limits lim
n→∞

(
1 +

α

n

)n
and lim

n→∞

n∑
k=0

αk

k!
, and the limits are equal to each other.

(VII) Proof of Theorem (6). To verify the inequalities, ‘expand’ each of wn, unvn, w2n as a sum of σpτ q, and
then compare the ‘expansions’. This is nothing but school algebra. For the limit result, apply (SR).
Proof of Corollary (7). Apply mathematical induction. Make use of Theorem (6).

9. Appendix 2: From the exponential function to ‘powers’ and ‘index laws’.
Theorem (5) and Theorem (6) are the first steps towards making sense of the exponential function exp : R −→ R.
With the repeated help from the Bounded-Monotone Theorem and Sandwich Rule (and with the help of the notion
of absolute convergence for infinite series introduced in the Handout Cauchy-Schwarz Inequality and Triangle
Inequality for square-summable sequences), we can prove Theorem (8):
Theorem (8).

(a) For any α ∈ R, the limits lim
n→∞

(
1 +

α

n

)n
, lim
n→∞

n∑
k=0

αk

k!
exist in R and are equal to each other.

(b) For any α, β ∈ R, the equaltiy lim
n→∞

n∑
k=0

(α+ β)k

k!
=

(
lim

n→∞

n∑
k=0

αk

k!

)(
lim
n→∞

n∑
k=0

βk

k!

)
holds.

Theorem (8) justifies the definition of the exponential function, and yields Theorem (9), which gives the basic
(arithmetic) properties of the exponential function.
Definition. (The exponential function.)

Define the function exp : R −→ R by exp(x) = lim
n→∞

n∑
k=0

xk

k!
for any x ∈ R.

exp is called the exponential function (on the reals).
Theorem (9).
The statements below hold:
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(a) exp(0) = 1, and exp(1) = e.

(b) For any s, t ∈ R, exp(s+ t) = exp(s) exp(t).

(c) For any s ∈ R, exp(s) > 0 and exp(−s) =
1

exp(s)
.

Arbitrary real powers of e is in fact defined through the use of the exponential function.
Definition.
For any σ ∈ R, we define the number eσ by eσ = exp(σ).

Remark. Theorem (9) immediately translates as:

(a) e0 = 1, and e1 = e.

(b) For any s, t ∈ R, es+t = eset.

(c) For any s ∈ R, es > 0 and e−s =
1

es
.

You may wonder what the point of this is.
You may want to ask:

‘Didn’t we know that es+t = eset for any real numbers s, t from school maths?’

The answer to this question is:

‘In fact, in school maths we were told es+t = eset for any real numbers s, t, but it was not explained why it
would be so.
Actually it was not explained why, for instance, 2

√
2+

√
3 = 2

√
2 ·2

√
3 holds. We were not given the explanation

because, in the first place, we did not know what 2
√
2 was.’

With the help of the exponential function exp : R −→ R and the notion of inverse function, we may make sense
of the (natural) logarithmic function ln : (0,+∞) −→ R that we encountered in school maths. Through the
exponential function and the logarithmic function we may make sense of the notion of arbitrary real powers of
arbitrary positive real numbers, by giving an appropriate definition for them, and justify the ‘index laws’ for them
with reference to the definition.
Definition.
Let a be a positive real number, and σ be a real number. We define the number aσ by aσ = exp(σ ln(a)).
Index Laws.
The statements below hold:

(a) For any a > 0, a0 = 1 and a1 = a.

(b) For any a > 0, for any σ, τ ∈ R, aσ+τ = aσaτ .

(c) For any a > 0, for any σ ∈ R, aσ > 0 and a−σ =
1

aσ
.

A full treatment of the above will be given in your analysis course.
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