
1. We recall the definitions for the notions of boundedness and monotonicity from your
calculus of one variable course.

Definition. (Boundedness for infinite sequences of real numbers.)

Let {an}∞n=0 be an infinite sequence in R.

(a) Let κ ∈ R.

We say that κ is a(n)
{

upper bound
lower bound

}
of {an}∞n=0 in R if, for any n ∈ N,{

an ≤ κ
an ≥ κ

}
.

(b) {an}∞n=0 is said to be
{

bounded above
bounded below

}
in R if there exists some κ ∈ R such

that for any n ∈ N,
{
an ≤ κ
an ≥ κ

}
.
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Definition. (Monotonicity and strict monotonicity for infinite sequences
of real numbers.)

Let {an}∞n=0 be an infinite sequence in R.

(a) {an}∞n=0 is said to be
{

increasing
decreasing

}
if, for any n ∈ N,

{
an ≤ an+1

an ≥ an+1

}
.

(b) {an}∞n=0 is said to be
{

strictly increasing
strictly decreasing

}
if, for any n ∈ N,

{
an < an+1

an > an+1

}
.

Remarks on terminology.

(a) {an}∞n=0 is said to be monotonic if {an}∞n=0 is increasing or decreasing.

(b) {an}∞n=0 is said to be strictly monotonic if {an}∞n=0 is strictly increasing or strictly
decreasing.
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2. We now recall the key result about infinite sequences below from your calculus of one
variable course:

Bounded-Monotone Theorem for infinite sequences of real numbers.

Let {an}∞n=0 be an infinite sequence of real numbers.

Suppose {an}∞n=0 is
{

increasing
decreasing

}
.

Further suppose {an}∞n=0 is
{

bounded above
bounded below

}
in R.

Then {an}∞n=0 converges in R.

Denote the limit of {an}∞n=0 by σ. For any
{

upper bound
lower bound

}
β of the infinite sequence

{an}∞n=0, the inequality
{
σ ≤ β
σ ≥ β

}
holds.
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3. Example (1).

For any n ∈ N, define an =
(n + 1)(n + 4)

(n + 2)(n + 3)
.

(a) {an}∞n=0 is bounded above in R by 1.
Proof.

(b) {an}∞n=0 is strictly increasing.
Proof.

By the Bounded-Monotone Theorem, {an}∞n=0 converges in R. Moreover, lim
n→∞

an ≤ 1.
Remark. In fact, we know from ‘direct calculation’ that lim

n→∞
an = 1.
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4. Example (2).

For any n ∈ N, define an =

n∑
k=0

9

10k+1
.

(a) {an}∞n=0 is bounded above in R by 1.
Proof.

Let n ∈ N. We have an =

n∑
k=0

9

10k+1
=

9

10
· 1− 1/10n+1

1− 1/10
= 1− 1

10n+1
≤ 1− 0 = 1.

Hence {an}∞n=0 is bounded above by 1.
(b) {an}∞n=0 is strictly increasing.

Proof.

Let n ∈ N. We have an+1 − an =

n+1∑
k=0

9

10k+1
−

n∑
k=0

9

10k+1
=

9

10n+2
> 0. Then

an+1 > an.
Hence {an}∞n=0 is strictly increasing.

By the Bounded-Monotone Theorem, {an}∞n=0 converges in R. Moreover, lim
n→∞

an ≤ 1.

Remark. In fact, we know from ‘direct calculation’ that lim
n→∞

an = 1. This equality
is what what ‘0.9̇ = 1’ really means.

5



5. Example (3).

For any n ∈ N\{0}, define an =

n∑
k=1

1

k2
.

(a) {an}∞n=1 is bounded above in R by 2.
Proof.
Let n ∈ N\{0}. We have

an =

n∑
k=1

1

k2
= 1+

n∑
k=2

1

k2
≤ 1+

n∑
k=2

1

k(k−1)
= 1+

n∑
k=2

(
1

k−1
− 1

k

)
= 1+

(
1

1
− 1

n

)
≤ 2.

Hence {an}∞n=1 is bounded above by 2.
(b) {an}∞n=1 is strictly increasing.

Proof.
Let n ∈ N\{0}. We have an+1 − an =

1

(n + 1)2
> 0. Then an+1 > an.

Hence {an}∞n=1 is strictly increasing.
By the Bounded-Monotone Theorem, {an}∞n=1 converges in R. Moreover, lim

n→∞
an ≤ 2.

Remark. After some hard work (beyond the scope of this course), we can show that
the {an}∞n=1 converges to π2/6.
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6. Example (4).
Let p be a positive prime number. Define α =

√
p. Let b ∈ (α,+∞).

Let {an}∞n=0 be the infinite sequence defined recursively by
a0 = b

an+1 =
1

2

(
an +

α2

an

)
for any n ∈ N

{an}∞n=0 provides ‘better and better’ approximations for α =
√
p:

x

y

0

α aj

Kjaj
2 − p

y = x2 − p

x

y

0

α aj

Kjaj
2 − p

aj+1

y = x2 − p y = 2ajx − (aj
2 + p)
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(a) {an}∞n=0 is bounded below by α by R.
Proof.
Note that a0 = b > α > 0.

Suppose it were true that there existed some n ∈ N so that an ≤ α.

Then there would be a smallest N ∈ N so that a
N
> α and a

N+1
≤ α. (Why?

Apply the Well-ordering Principle for Integers.)

We would have
α ≥ a

N+1
=

1

2

(
a
N
+

α2

a
N

)
=

a
N
2 + α2

2a
N

.

Since a
N
> 0, we would have

2αa
N
≥ a

N
2 + α2.

Then
(a

N
− α)2 = a

N
2 − 2αa

N
+ α2 ≤ 0.

Therefore a
N
= α. But a

N
> α.

Contradiction arises.

Hence, in the first place, we have an > α for any n ∈ N.
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(b) {an}∞n=0 is strictly decreasing.
Proof.
Let n ∈ N. We have an > α > 0.

Then an
2 − α2 > 0 also.

Therefore

an+1 − an =
1

2

(
an +

α2

an

)
− an =

1

2

(
−an +

α2

an

)
= −an

2 − α2

2an
< 0.

Then an+1 > an.

Hence {an}∞n=0 is strictly decreasing.

By the Bounded-Monotone Theorem, {an}∞n=0 converges in R. Moreover, lim
n→∞

an ≥ α.

9



Since lim
n→∞

an is now known to exist, we can apply the basic rules of arithmetic for limits
of sequences to determine the value of lim

n→∞
an:

For convenience, write ℓ = lim
n→∞

an. Then ℓ = lim
n→∞

an+1 also.
Since α > 0, we have ℓ ≥ α > 0. (So 1/ℓ is well-defined.)

Recall that for any n ∈ N, an+1 =
1

2

(
an +

α2

an

)
. Then

ℓ = lim
n→∞

an+1 = lim
n→∞

1

2

(
an +

α2

an

)
=

1

2

(
ℓ +

α2

ℓ

)
.

Now we have ℓ2 = α2. Then ℓ = α (because ℓ > 0 and α > 0.)

Remark. Although the Bounded-Monotone Theorem does not tell us the value of
lim
n→∞

an, it ensures that it makes sense for us to compute it through other means. This is
why this theoretical result is useful.
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7. Further digressions on Example (4).
(1) The idea and the calculation will still work even when we do not require p to be a positive prime number;

we may allow p to be any positive real number that we like. The infinite sequence {an}∞n=0 will provide
approximations which descends to α =

√
p as close as we like, but never reaches α.

(2) How about finding cubic roots of positive real numbers?
Suppose p is a positive real number and α = 3

√
p. Suppose b ∈ (α,+∞). Define infinite sequence

{an}∞n=0 recursively by  a0 = b

an+1 =
1

3
(2an +

α3

an2
) for any n ∈ N

This infinite sequence {an}∞n=0 will provide approximations which descends to α = 3
√
p as close as we

like, but never reaches α.
(First draw the picture and formulate the algorithm which are analogous to the ones for the original
example on square roots. This will give you a feeling on what this infinite sequence is ‘doing’. Then try
to formulate and prove some statements which are analogous to the ones that we have proved for the
original example.)

(3) Can you generalize the idea to finding quartic roots of positive real numbers? Quintic roots? n-th roots?
(4) The idea and method described here is a ‘concrete’ example of the application of Newton’s Method

(for finding approximate solutions of equations).
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8. With the help of the notion of supremum and infimum, the value of the limit guaranteed
to exist in the conclusion part of the version of the Bounded-Monontone Theorem that
you learnt in your calculus of one variable course can be made explicit in terms of the
information provided by its assumption part.

We start by re-formulating the notion of bounded-ness for infinite sequences of real num-
bers in terms of bounded-ness for their corresponding ‘sets of all terms’.

Lemma (1). (Boundedness for infinite sequences and boundedness for
sets of all terms.)

Let {an}∞n=0 be an infinite sequence in R.

Define T ({an}∞n=0) = {x ∈ R : x = an for some n ∈ N}. (T ({an}∞n=0) is the set of all
terms of {an}∞n=0.)

The statements below hold:
(a) {an}∞n=0 is bounded above in R by β iff T ({an}∞n=0) is bounded above in R by β.

(b) {an}∞n=0 is bounded below in R by β iff T ({an}∞n=0) is bounded below in R by β.

Proof. Exercise. (Word game.)
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9. Bounded-Monotone Theorem for infinite sequences of real numbers, fur-
ther elaborated.

Let {an}∞n=0 be an infinite sequence of real numbers. Denote the set of all terms of {an}∞n=0

by T .

Suppose {an}∞n=0 is
{

increasing
decreasing

}
.

Further suppose {an}∞n=0 is
{

bounded above
bounded below

}
in R. Denote the

{
supremum
infimum

}
of T

in R by σ, if it exists.

Then
{
sup(T )
inf(T )

}
exists in R, {an}∞n=0 converges in R, and lim

n→∞
an = σ.

Furthermore, for any
{

upper bound
lower bound

}
β of the infinite sequence {an}∞n=0, the inequality{

σ ≤ β
σ ≥ β

}
holds. Also, for any k ∈ N, the inequality

{
ak ≤ σ
ak ≥ σ

}
holds.

Remark. The proof of the Bounded-Monotone Theorem relies on the Least-upper-
bound Axiom:

Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a
supremum in R.
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10. An appropriate argument for the Bounded-Monotone Theorem also presumes a satisfac-
tory definition for the notion of limit of infinite sequence of real numbers:

Let {an}∞n=0 be an infinite sequence of real numbers, and ℓ be a real number.
We say that {an}∞n=0 converges to ℓ, and write lim

n→∞
an = ℓ if the condition (⋆) is

satisfied:
(⋆) For any ε > 0, there exists some N ∈ N such that for any k ∈ N, if k > N then

|ak − ℓ| < ε.
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11. Proof of the Bounded-Monotone Theorem.
Let {an}∞n=0 be an infinite sequence of real numbers. Suppose {an}∞n=0 is increasing, and
is bounded above in R.

15



12. Many infinite sequences which produce interesting limits are those which are strictly
monotonic and bounded. Examples (2), (3), (4) are good illustrations. For such an
infinite sequence, because of Lemma (2) (whose proof is left as an exercise), its limit is
‘better and better approximated’ by the terms of the sequence, but never ‘attained’ by
any individual term.

Lemma (2).
Let {an}∞n=0 be an infinite sequence in R. Define T ({an}∞n=0) = {x ∈ R : x =
an for some n ∈ N}. The statements below hold:

(a) Suppose {an}∞n=0 is strictly increasing. Then T ({an}∞n=0) has no greatest element.
(b) Suppose {an}∞n=0 is strictly decreasing. Then T ({an}∞n=0) has no least element.

The conceptual role of supremum/infimum in the theoretical device Bounded-Monotone
Theorem in pinpointing the limit for such an infinite sequence is indispensable.

It is in trying to make sense of the Bounded-Monotone Theorem and to give an ‘purely
algebraic justification’ for this statement (in contrast to appealing to geometric intuition
alone) that prompted Dedekind to inspect the real number system carefully in the first
place. This is a key moment in the history of mathematics.
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