
MATH1050 Greatest/least element, upper/lower bound

1. Definition.
Let S be a subset of R.

(a) Let λ ∈ S. λ is said to be a
{

greatest
least

}
element of S if, for any x ∈ S,

{
x ≤ λ
x ≥ λ

}
.

(b) S is said to have a
{

greatest
least

}
element if there exists some λ ∈ S such that for any x ∈ S,

{
x ≤ λ
x ≥ λ

}
.

Remarks.

(A) Suppose S has a
{

greatest
least

}
element. Then it is the unique

{
greatest

least

}
element of S, in the sense below:

∗ Suppose λ, λ′ are
{

greatest
least

}
elements of S. Then λ = λ′.

We may replace the article ‘a’ in ‘a
{

greatest
least

}
element’ by the article ‘the’.

(B) Notation. We denote the
{

greatest
least

}
element of S by

{
max(S)
min(S)

}
.

(C) Terminology. We may choose to write ‘S has a greatest element’ as max(S) exists’. Et cetera. The situation
is analogous for least element.

2. Definition.
Let S be a subset of R.

(a) Let β ∈ R. β is said to be a(n)
{

upper
lower

}
bound of S in R if, for any x ∈ S,

{
x ≤ β
x ≥ β

}
.

(b) S is said to be bounded
{

above
below

}
in R if there exists some β ∈ R such that for any x ∈ S,

{
x ≤ β
x ≥ β

}
.

(c) S is said to be bounded in R if S is bounded above in R and bounded below in R.

Remarks.

(A) If β is an upper bound of S, then every number greater than β is also an upper bound of S. Therefore S has
infinitely many upper bounds. It does not make sense to write ‘the upper bound of S is so-and-so’.
The situation is similar for ‘being bounded below’.

(B) Suppose λ is a greatest element of S. Then λ is an upper bound of S.
(How about its converse?)
The situation is similar for ‘least element’ and ‘lower bound’.

3. Example (A). (Well-ordering Principle for Integers.)
Recall this statement below, known as the Well-ordering Principle for Integers (WOPI):

Let S be a non-empty subset of N. S has a least element.

There are various re-formulations of the statement (WOPI):

• (WOPIL) Let T be a non-empty subset of Z. Suppose T is bounded below in R by some β ∈ Z. Then T has a
least element.

• (WOPIG) Let U be a non-empty subset of Z. Suppose U is bounded above in R by some γ ∈ Z. Then U has a
greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an exercise.)
From now on all three of them are referred to as the Well-ordering Principle for Integers.

1



4. Example (B).

S
least
element?

greatest
element?

bounded
below
in R?

bounded
above
in R?

[0, 1) 0 Aa nil Ab Yes (by 0) Ac Yes (by 1) Ad

[0,+∞) 0 Ba nil Bb Yes (by 0) Bc No Bd

(0,+∞) nil Ca nil Cb Yes (by 0) Cc No Cd

[0, 1)∩Q 0 Da nil Db Yes (by 0) Dc Yes (by 1) Dd

[0,+∞)∩Q 0 Ea nil Eb Yes (by 0) Ec No Ed

[0, 1)\Q nil Fa nil Fb Yes (by 0) Fc Yes (by 1) Fd

[0,+∞)\Q nil Ga nil Gb Yes (by 0) Gc No Gd

The detail for the argument here is relatively easy to work out, because each of the sets concerned are constructed
using just one interval whose endpoints are rational numbers.
Where the set concerned has a least/greatest element, or is bounded above/below in R, we may just name an
appropriate number which serves as a least/greatest element of the set or an upper/lower bound of the set in R, and
verify that this number satisfies the condition specified in the relevant definition.

(Aa): [0, 1) has a least element, namely, 0.
Proof.
Write S = [0, 1). Note that 0 ∈ S.
Pick any x ∈ S. By definition, 0 ≤ x < 1. In particular x ≥ 0.
It follows that 0 is the least element of S.

Remark. The argument for each of (Ba), (Da), (Ea) is similar.

(Ad): [0, 1) is bounded above in R by 1.
Proof.
Write S = [0, 1).
Pick any x ∈ S. By definition, 0 ≤ x < 1. In particular x < 1. (So x ≤ 1 also holds.)
It follows that S is bounded above by 1.

Remark. The argument for each of (Ac)-(Gc), (Dd), (Fd) is similar.
Here we focus on arguments which explain why a certain set fails to have a least/greatest element or to be bounded
above/below in R:

(Ab): [0, 1) has no greatest element.
Proof.
Write S = [0, 1). Suppose S had a greatest element, say, λ.
(By definition, for any x ∈ S, x ≤ λ.)
Then λ ∈ S. Therefore 0 ≤ λ < 1.

Define x0 =
λ+ 1

2
.

Then 0 ≤ λ < x0 < 1.
Note that x0 ∈ S. But λ < x0.
So λ would not be a greatest element of S. Contradiction arises.
Hence S has no greatest element in the first place.

Remark. The argument for each of (Ca), (Fa), (Ga), (Db), (Fb) is similar.

(Bb): [0,+∞) has no greatest element.
Proof.
Write S = [0,+∞). Suppose S had a greatest element, say, λ.
(By definition, for any x ∈ S, x ≤ λ.)
Then λ ∈ S. λ ≥ 0.
Define x0 = λ+ 1.
Then 0 ≤ λ < x0.
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Note that x0 ∈ S. But λ < x0.
So λ would not be a greatest element of S. Contradiction arises.
Hence S has no greatest element in the first place.

Remark. The argument for each of (Cb), (Eb), (Gb) is similar.

(Bd): [0,+∞) is not bounded above in R.
Proof.
Write S = [0,+∞). Suppose S were bounded above in R, say, by some β ∈ R.
(By definition, for any x ∈ S, x ≤ β.)
Then, since 0 ∈ S, we have β ≥ 0.
Define x0 = β + 1.
Then 0 ≤ β < x0.
Note that x0 ∈ S. But β < x0.
So β would not be an upper bound of S in R. Contradiction arises.
Hence S is not bounded above in R in the first place.

Remark. The argument for each of (Cd), (Ed), (Gd) is similar.

5. Example (C).

Let S = {x ∈ R : x2 ≤ (
√
2 + 1)x−

√
2}, and T = S\Q.

(S is in fact the solution set of the inequality x2 ≤ (
√
2 + 1)x−

√
2 with unknown x in the reals.)

(a) S has a greatest element and S has a least element.
Proof.
• Note that S = [1,

√
2].

S has a greatest element, namely
√
2.

S has a least element, namely 1.
(b) S is bounded above and below in R.

Proof.
• S has a least element and a greatest element. They are respectively a lower bound and an upper bound of

S in R.
(c) T has a greatest element, and T has no least element.

Proof.
• Note that T = [1,

√
2]\Q.

• We have
√
2 ∈ [1,

√
2], and

√
2 is irrational. Then

√
2 ∈ T .

Pick any x ∈ T . By definition, 1 ≤ x ≤
√
2 and x is irrational. In particular x ≤

√
2.

Therefore, by definition,
√
2 is a greatest element of T .

• Suppose T had a least element, say, λ. By definition, λ is irrational and 1 ≤ λ ≤
√
2.

Since λ is irrational, λ ̸= 1. Then λ > 1.

Define x0 =
1 + λ

2
. By definition, 1 < x0 < λ ≤

√
2.

Moreover x0 is irrational. (Why? Fill in the detail.)
Then x0 ∈ T . But x0 < λ and λ is a least element of T . Contradiction arises.

(d) T is bounded above and below in R.
Proof.

• T has a least element. It is a lower bound of T in R.
• By definition, for any x ∈ T , x ≤

√
2. Then

√
2 is an upper bound of T in R.

6. Example (D).

Let S =

{
1

m+ 1
+

1

n+ 1

∣∣∣∣ m,n ∈ N

}
.

(a) S has a greatest element and S has no least element.
(b) S is bounded above and below in R.
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Proof of (a).

• Note that 2 ∈ S, because 2 =
1

0 + 1
+

1

0 + 1
and 0 ∈ N.

Pick any x ∈ S. There exists some m,n ∈ N such that x =
1

m+ 1
+

1

n+ 1
.

Since m ≥ 0 and n ≥ 0, x ≤ 1

0 + 1
+

1

0 + 1
= 2.

Then 2 is a greatest element of S.
• Suppose S had a least element, say, λ.

By definition, λ ∈ S. Then there exist some m0, n0 ∈ N such that λ =
1

m0 + 1
+

1

n0 + 1
.

Take x0 =
1

m0 + 1
+

1

n0 + 2
. By definition, x0 ∈ S. (Why?)

Since 0 < n0 + 1 < n0 + 2, we have x0 =
1

m0 + 1
+

1

n0 + 2
<

1

m0 + 1
+

1

n0 + 1
= λ.

So x0 ∈ S and x0 < λ. But λ was a least element of S by assumption. Contradiction arises.

7. Example (B) re-visited for a special observation.
Re-consider each subset S of R studied in Example (B):

(a) If S is bounded below in R, then its lower bounds seem to form the closed interval (−∞, 0], with greatest element,
0. (This claim is easy to verify.)
We may refer to the number 0 as the greatest amongst all lower bounds of S in R, or simply, a greatest lower
bound of S in R.

(b) If S is bounded above in R, then its upper bounds seem to form a closed interval of the form [1,+∞), with least
element 1.
We may refer to the number 1 as the least amongst all upper bounds of S in R, or simply, a least upper bound
of S in R.

S
least
element?

greatest
element?

bounded
below
in R?

bounded
above
in R?

set of
all lower
bounds?

set of
all upper
bounds?

greatest
lower
bound?

least
upper
bound?

[0, 1) 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞) 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
(0,+∞) nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)∩Q 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)∩Q 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)\Q nil nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)\Q nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil

Remark. The verification of the claim (♯) is non-trivial:

(♯) The set of all upper bounds of the set [0, 1) ∩ Q is [1,+∞).

The other two claims are easy to verify.

8. Example (C) re-visited for a special observation.
Re-consider Example (C), in which

S = {x ∈ R : (
√
2 + 1)x−

√
2} = [1,

√
2], T = S\Q.

(a) The lower bounds of S form the closed interval (−∞, 1], with greatest element 1. (This claim is easy to verify.)
We refer to the number 1 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval [
√
2,+∞), with least element

√
2. (This claim is easy to verify.)

We refer to the number
√
2 as the least upper bound of S.

(c) The lower bounds of T form the closed interval of the form (−∞, 1], with greatest element 1. (This claim is easy
to verify.)
We refer to the number 1 as the greatest lower bound of T .
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(d) The upper bounds of T form the closed interval of the form [
√
2,+∞), with least element

√
2. (The verification

of this claim is non-trivial.)
We refer to the number

√
2 as the least upper bound of T .

9. Example (D) re-visited for a special observation.
Re-consider Example (D), in which

S =

{
1

m+ 1
+

1

n+ 1

∣∣∣∣ m,n ∈ N

}
.

(a) The lower bounds of S form the closed interval (−∞, 0], with greatest element 0. (The verification of this claim
is non-trivial.)
We refer to the number 0 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval [2,+∞), with least element 2. (This claim is easy to verify.)
We refer to the number 2 as the least upper bound of S.

10. The phenomena discovered in the re-considerations of Examples (B), (C), (D) motivate the definitions for the notion
of supremum, infimum below.
Definition.
Let S be a subset of R, and σ be a real number.

Suppose S is
{

bounded above
bounded below

}
in R, and σ is a(n)

{
upper bound
lower bound

}
of S in R.

Then we say that σ is a(n)
{

supremum
infimum

}
of S in R if σ is the

{
least element

greatest element

}
of the set of all

{
upper bounds
lower bounds

}
of S in R.
Remarks.

(A) If S has a supremum in R, it is the unique supremum of S in R. Et cetera.

(B) Notation. We denote the
{

supremum
infimum

}
of S by

{
sup(S)
inf(S)

}
.

(C) Terminology. We may choose to write ‘S has a supremum’ as sup(S) exists’. Et cetera. The situation is
analogous for infimum.

11. You may write down any non-empty subset of R you like, and will find that if the set concerned is bounded above/below
in R, it seems to have a supremum/infimum in R.
This provides evidence for the Least-upper-bound Axiom, which is a fundamental property of the real number
system.
Least-upper-bound Axiom for the reals (LUBA).
Let A be a non-empty subset of R. Suppose A is bounded above in R. Then A has a supremum in R.
The statement (LUBA) is logically equivalent to the equally ‘obvious’ statement:
‘Greatest-lower-bound Axiom for the reals’ (GLBA).
Let A be a non-empty subset of R. Suppose A is bounded below in R. Then A has an infimum in R.
Remarks.

(a) The statements (LUBA), (GLBA) indeed logically equivalent.
The proof is left as an exercise.

(b) The verifications for the non-trivial claims in the re-consideration of Examples (B), (C), (D) require the appli-
cation of a heuristically obvious but non-trivial result about the real number system known as:
Archimedean Principle (AP).
For any positive real number ε, there exists some positive integer N such that Nε > 1.
The validity of the Archimedean Principle itself relies on the Least-upper-bound Axiom. (This is why those
claims are non-trivial.)

In your mathematical analysis course, the Least-upper-bound Axiom serves as the ultimate justification for other
‘intuitively obvious’ results which you have been using without questioning in infinitesimal calculus, such as the
Bounded-Monotone Theorem for infinite sequences of real numbers, the Intermediate Value Theorem
and the Mean-Value Theorem.
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