1. **Definition.**

Let S be a subset of IR.
(a) Let
$$\lambda \in S$$
.
 λ is said to be a $\left\{ \begin{array}{l} \text{greatest} \\ \text{least} \end{array} \right\}$ element of S if, for any $x \in S$, $\left\{ \begin{array}{l} x \leq \lambda \\ x \geq \lambda \end{array} \right\}$.
(b) S is said to have a $\left\{ \begin{array}{l} \text{greatest} \\ \text{least} \end{array} \right\}$ element if there exists some $\lambda \in S$ such that for any $x \in S$, $\left\{ \begin{array}{l} x \leq \lambda \\ x \geq \lambda \end{array} \right\}$.

Remarks.

Remarks.
(A) 'If it exists then it is unique': Suppose
$$\lambda, \lambda'$$
 are $\{ \text{greatest} \}$ elements of S . Then $\lambda = \lambda'$.
(B) Notation. We denote the $\{ \text{greatest} \}$ element of S by $\{ \max(S) \\ \min(S) \}$.

(C) **Terminology.** We may choose to write

'S has a greatest element'

as

 $\max(S)$ exists'.

Et cetera. The situation is analogous for least element.

2. **Definition.**

Let S be a subset of \mathbb{R} . (a) Let $\beta \in \mathbb{R}$. β is said to be $a(n) \left\{ \begin{array}{l} \mathbf{upper} \\ \mathbf{lower} \end{array} \right\}$ bound of S in \mathbb{R} if, for any $x \in S$, $\left\{ \begin{array}{l} x \leq \beta \\ x \geq \beta \end{array} \right\}$. (b) S is said to be bounded $\left\{ \begin{array}{l} \mathbf{above} \\ \mathbf{below} \end{array} \right\}$ in \mathbb{R} if there exists some $\beta \in \mathbb{R}$ such that for any $x \in S$, $\left\{ \begin{array}{l} x \leq \beta \\ x \geq \beta \end{array} \right\}$.

(c) S is said to be **bounded in** \mathbb{R} if S is bounded above in \mathbb{R} and bounded below in \mathbb{R} .

Remarks.

(A) If S has one upper bound then it has infinitely many upper bounds. It does not make sense to write '*the* upper bound of S is so-and-so'. The situation is similar for 'being bounded below'.

(B) Suppose λ is a greatest element of S. Then λ is an upper bound of S. (How about its converse?)

The situation is similar for 'least element' and 'lower bound'.

3. Example (A). (Well-ordering Principle for Integers.)

Recall this statement below, known as the Well-ordering Principle for Integers (WOPI):

Let S be a non-empty subset of \mathbb{N} . S has a least element.

There are various re-formulations of the statement (WOPI):

- (WOPIL) Let T be a non-empty subset of Z.
 Suppose T is bounded below in ℝ by some β ∈ Z.
 Then T has a least element.
- (WOPIG) Let U be a non-empty subset of Z.
 Suppose U is bounded above in ℝ by some γ ∈ Z.
 Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an exercise.)

From now on all three of them are referred to as the Well-ordering Principle for Integers.

4. Example (B).

S	least element?	greatest element?	bounded below in IR ?	bounded above in IR ?	
[0, 1)	O Aa	nil Ab	Ac	Yes(byl) Ad	
$[0, +\infty)$	Ba	Nil Bb	Bc	$N_{\mathfrak{d}}$ Bd	
$(0, +\infty)$	Ca	Cb	Cc	Cd	
$[0,1) \cap \mathbb{Q}$	Da	Db	Dc	Dd	
$[0,+\infty)\cap \mathbb{Q}$	Ea	Eb	Ec .	Ed	
$[0,1) \backslash \mathbb{Q}$	Fa	Fb	Fc	Fd	
$[0,+\infty)\backslash \mathbb{Q}$	Ga	Gb	Gc	Gd	

....

(Ab): [0, 1) has no greatest element.
Proof. [Proof by - contradiction argument.]
Write
$$S = [0, 1)$$
.
Suppre S had a greatest element, say, λ .
[$\frac{\lambda}{S}$ $\frac{$

Define
$$X_0 = \frac{\lambda + 1}{2}$$
.
Then $0 \le \lambda < x_0 < 1$.
We have $X_0 \in S$ and $X_0 > \lambda$.
Catradiction arises.

Since
$$\lambda \in S$$
, we have $\lambda \ge 0$.
Define $x_0 = \lambda + 1$.
Then $0 \le \lambda < X_0$.
We have $x_0 \in S$ and $X_0 > \lambda$.
Contradiction arises.

Define $X_0 = \beta + 1$. Then $0 \le \beta < x_0$. We have $X_0 \in S$ and $X_0 > \beta$. Contradiction arises.

Example (B).

S	least element?	greatest element?	bounded below in I R?	bounded above in IR ?	
[0, 1)	O Aa	nil Ab	<i>Ac</i>	Yes (by 1) Ad	
$[0, +\infty)$	·O Ba	hil Bb		$N \circ Bd$	
$(0, +\infty)$	nil Ca	nil Cb	yes_Cc	No Cd	
$[0,1) \cap \mathbb{Q}$	Ò Da	nil Db	-(by <u>Dc</u>	Yes (by 1) Dd	
$[0,+\infty)\cap\mathbb{Q}$	\circ $_{Ea}$	nil Eb		N_0 Ed	
$[0,1)ackslash \mathbb{Q}$	nil Fa	hil Fb	Fc	Yes $(hyl)_{Fd}$	
$[0,+\infty)\backslash \mathbb{Q}^{n}$	nil Ga	nil Gb	Gc	No Gd	

5. Example (C).

Let

$$S = \{ x \in \mathbb{R} : x^2 \le (\sqrt{2} + 1)x - \sqrt{2} \},\$$

and $T = S \setminus \mathbb{Q}$.

(S is in fact the solution set of the inequality)

$$x^2 \le (\sqrt{2}+1)x - \sqrt{2}$$

with unknown x in the reals.)

(a) S has a greatest element and S has a least element.

Proof.

• Note that $S = [1, \sqrt{2}]$. *S* has a greatest element, namely $\sqrt{2}$. *S* has a least element, namely 1.

(b) S is bounded above and below in ${\sf I\!R}.$

Proof.

• S has a least element and a greatest element.

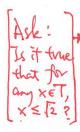
They are respectively a lower bound and an upper bound of S in \mathbb{R} .

Example (C).

Let $S = \{x \in \mathbb{R} : x^2 \le (\sqrt{2} + 1)x - \sqrt{2}\}$, and $T = S \setminus \mathbb{Q}$.

(c) T has a greatest element, and T has no least element. Proof.

- Note that $T = [1, \sqrt{2}] \setminus \mathbb{Q}$.
- We have $\sqrt{2} \in [1, \sqrt{2}]$, and $\sqrt{2}$ is irrational. Then $\sqrt{2} \in T$.



Pick any $x \in T$. By definition, $1 \le x \le \sqrt{2}$ and x is irrational. In particular $x \le \sqrt{2}$. Therefore, by definition, $\sqrt{2}$ is a greatest element of T.

• Suppose T had a least element, say, λ . By definition, λ is irrational and $1 \leq \lambda \leq \sqrt{2}$. Since λ is irrational, $\lambda \neq 1$. Then $\lambda > 1$.

Define $x_0 = \frac{1+\lambda}{2}$. By definition, $1 < x_0 < \lambda \le \sqrt{2}$.

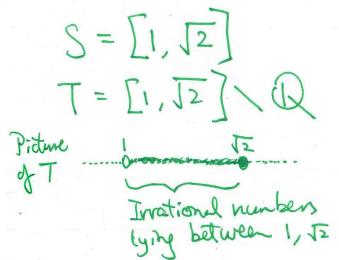
Moreover x_0 is irrational. (Why? Fill in the detail.)

Then $x_0 \in T$. But $x_0 < \lambda$ and λ is a least element of T. Contradiction arises.

(d) T is bounded above and below in \mathbb{R} .

Proof.

- T has a least element. It is a lower bound of T in \mathbb{R} .
- By definition, for any $x \in T$, $x \leq \sqrt{2}$. Then $\sqrt{2}$ is an upper bound of T in **R**.



6. Example (D).

Let
$$S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \mid m, n \in \mathbb{N} \right\}.$$

(a) S has a greatest element and S has no least element. (b) S is bounded above and below in \mathbb{R} .

Proof of (a).

• We verify that S has a greatest element, hamely 2:
* Note that
$$2 \in S$$
. (Reason: $2 = \frac{1}{0+1} + \frac{1}{0+1}$, and $0 \in \mathbb{N}$.)
* Pick any $x \in S$.
(Check:) By the definition of S,
For any there exist some $m, n \in \mathbb{N}$ such that $x = \frac{1}{m+1} + \frac{1}{n+1}$.
Since $m, n \in \mathbb{N}$, we have $m \ge 0$ and $n \ge 0$.
Then $x = \frac{1}{m+1} + \frac{1}{n+1} \le \frac{1}{0+1} + \frac{1}{0+1} = 2$.
* It follows that 2 is a greatest element of S. \square

 $(\text{Heuristically}, S'= \{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots; 1, \frac{5}{6}, \frac{3}{4}, \frac{7}{10}, \dots; 1, \frac{5}{6}, \frac{3}{4}, \frac{7}{10}, \dots; n\}$

 $\frac{2}{3}, \frac{7}{12}, \frac{8}{15}, \dots;$ $\frac{1}{2}, \frac{9}{20}, \dots;$ $\frac{2}{5}, \dots;$

Example (D).

Let
$$S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \mid m, n \in \mathbb{N} \right\}.$$

 $\begin{array}{c} \text{thewrittically}, S' = \left\{ 2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots \right\} \\ 1, \frac{5}{6}, \frac{3}{4}, \frac{7}{10}, \dots \right\} \\ \frac{2}{3}, \frac{7}{12}, \frac{8}{15}, \dots \right\} \\ \frac{1}{2}, \frac{9}{20}, \dots \right\} \\ \frac{2}{5}, \dots \right\}$ (a) S has a greatest element and S has no least element. (b) S is bounded above and below in \mathbb{R} .

Proof of (a).

We apply the proof-by-contradiction method to prove that
S has no least element.
Suppose S had a least element, say,
$$\lambda$$
.
By definition, $\lambda \in S$.
[Ask: Is there any element of S which is less than λ ? How to conceive it?]
By the definition of S,
there exist some mo, no $\in \mathbb{N}$ such that $\lambda = \frac{1}{m_0+1} + \frac{1}{n_0+1}$.
Define $\chi_0 = \frac{1}{m_0+2} + \frac{1}{n_0+1}$. By the definition of S, $\chi_0 \in S$. (Why?)
Also, $\chi_0 = \frac{1}{m_0+2} + \frac{1}{n_0+1} < \frac{1}{m_0+1} + \frac{1}{n_0+1} = \lambda$. (Why?)
Contradiction arrises. \Box

7. Example (B) re-visited for a special observation.

Re-consider each subset S of \mathbb{R} studied in Example (B):

(a) If S is bounded below in \mathbb{R} , then its lower bounds seem to form the closed interval $(-\infty, 0]$, with greatest element, 0.

We may refer to the number 0 as the greatest amongst all lower bounds of S in \mathbb{R} , or simply, a greatest lower bound of S in \mathbb{R} .

(This claim is easy to verify.)

S	least element?	bounded below in IR ?	set of all lower bounds?	greatest lower bound?	
[0, 1)	0	Yes (by 0)	$(-\infty,0]$	0	
$[0, +\infty)$	0	Yes (by 0)	$(-\infty,0]$	0	
$(0, +\infty)$	nil	Yes (by 0)	$(-\infty,0]$	0	
$[0,1) \cap \mathbf{Q}$	0	Yes (by 0)	$(-\infty,0]$	0	
$[0,+\infty)\cap \mathbb{Q}$	0	Yes (by 0)	$(-\infty,0]$	0	
$[0,1)ackslash \mathbb{Q}$	nil	Yes (by 0)	$(-\infty,0]$	0	
$[0,+\infty) \setminus \mathbb{Q}$	nil	Yes (by 0)	$(-\infty,0]$	0	

Example (B) re-visited for a special observation.

Re-consider each subset S of \mathbb{R} studied in Example (B):

(a) ...

(b) If S is bounded above in \mathbb{R} , then its upper bounds seem to form a closed interval of the form $[1, +\infty)$, with least element 1.

We may refer to the number 1 as the least amongst all upper bounds of S in \mathbb{R} , or simply, a least upper bound of S in \mathbb{R} .

~ least	least	greatest	bounded	bounded	set of	set of	greatest	least
S	element?	element?	below	above	all lower	all upper	lower	upper
e	element: elem	element:	in IR ?	in IR ?	bounds?	bounds?	bound?	bound?
[0, 1)	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty, 0]$	$[1, +\infty)$	0	1
$[0, +\infty)$	0	nil	Yes (by 0)	No	$(-\infty, 0]$	Ø	0	nil
$(0, +\infty)$	nil	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil
$[0,1) \cap \mathbf{Q}$	0	nil	Yes (by 0)	Yes (by 1)	$(-\infty, 0]$	$[1, +\infty)$	0	1
$[0,+\infty)\cap \mathbb{Q}$	0	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil
$[0,1)ackslash \mathbf{Q}$	nil	nil	Yes (by 0)	Yes (by 1)	$(-\infty,0]$	$[1, +\infty)$	0	1
$[0,+\infty) \setminus \mathbb{Q}$	nil	nil	Yes (by 0)	No	$(-\infty,0]$	Ø	0	nil

Remark. The verification of the claim (\ddagger) is non-trivial:

(\sharp) The set of all upper bounds of the set $[0,1) \cap \mathbb{Q}$ is $[1,+\infty)$.

The other two claims are easy to verify.

8. Example (C) re-visited for a special observation.

Re-consider Example (C), in which

$$S = \{x \in \mathbb{R} : (\sqrt{2} + 1)x - \sqrt{2}\} = [1, \sqrt{2}], \quad T = S \setminus \mathbb{Q}.$$

(a) The lower bounds of S form the closed interval $(-\infty, 1]$, with greatest element 1. (This claim is easy to verify.) We refer to the number 1 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval $[\sqrt{2}, +\infty)$, with least element $\sqrt{2}$. (This claim is easy to verify.) We refer to the number $\sqrt{2}$ as the least upper bound of S.

(c) The lower bounds of T form the closed interval of the form $(-\infty, 1]$, with greatest element 1. (This claim is easy to verify.) We refer to the number 1 as the greatest lower bound of T.

(d) The upper bounds of T form the closed interval of the form $[\sqrt{2}, +\infty)$, with least element $\sqrt{2}$. (The verification of this claim is non-trivial.) We refer to the number $\sqrt{2}$ as the least upper bound of T.

9. Example (D) re-visited for a special observation.

Re-consider Example (D), in which

$$S = \left\{ \frac{1}{m+1} + \frac{1}{n+1} \mid m, n \in \mathbb{N} \right\}.$$

(a) The lower bounds of S form the closed interval (-∞, 0], with greatest element 0. (The verification of this claim is non-trivial.)
We refer to the number 0 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval $[2, +\infty)$, with least element 2. (This claim is easy to verify.)

We refer to the number 2 as the least upper bound of S.

10. The phenomena discovered in the re-considerations of Examples (B), (C), (D) motivate the definitions for the notion of *supremum*, *infimum* below.

Definition.

Let S be a subset of \mathbb{R} , and σ be a real number.

Suppose S is
$$\left\{\begin{array}{l} \text{bounded above}\\ \text{bounded below}\end{array}\right\}$$
 in \mathbb{R} , and σ is $a(n)$ $\left\{\begin{array}{l} \text{upper bound}\\ \text{lower bound}\end{array}\right\}$ of S in \mathbb{R} .
Then we say that σ is $a(n)$ $\left\{\begin{array}{l} \text{supremum}\\ \text{infimum}\end{array}\right\}$ of S in \mathbb{R} if σ is the $\left\{\begin{array}{l} \text{least element}\\ \text{greatest element}\end{array}\right\}$ of the set of all $\left\{\begin{array}{l} \text{upper bounds}\\ \text{lower bounds}\end{array}\right\}$ of S in \mathbb{R} .

Remarks.

(A) If S has a supremum in \mathbb{R} , it is the unique supremum of S in \mathbb{R} . Et cetera.

(B) Notation. We denote the $\left\{ \begin{array}{l} \text{supremum}\\ \text{infimum} \end{array} \right\}$ of S by $\left\{ \begin{array}{l} \sup(S)\\ \inf(S) \end{array} \right\}$.

(C) **Terminology.** We may choose to write 'S has a supremum' as $\sup(S)$ exists'. Et cetera. The situation is analogous for infimum.

11. You may write down any non-empty subset of \mathbb{R} you like, and will find that if the set concerned is bounded above/below in \mathbb{R} , it seems to have a supremum/infimum in \mathbb{R} .

This provides evidence for the **Least-upper-bound Axiom**, which is a fundamental property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).

Let A be a non-empty subset of \mathbb{R} . Suppose A is bounded above in \mathbb{R} . Then A has a supremum in \mathbb{R} .

The statement (LUBA) is logically equivalent to the equally 'obvious' statement: **'Greatest-lower-bound Axiom for the reals' (GLBA).** Let A be a non-empty subset of \mathbb{R} . Suppose A is bounded below in \mathbb{R} .

Then A has an infimum in \mathbb{R} .

Remarks.

(a) The statements (LUBA), (GLBA) indeed logically equivalent. The proof is left as an exercise.

(b) The verifications for the non-trivial claims in the re-consideration of Examples (B),
 (C), (D) require the application of a heuristically obvious but non-trivial result about the real number system known as:

Archimedean Principle (AP).

For any positive real number ε , there exists some positive integer N such that $N\varepsilon > 1$.

The validity of the Archimedean Principle itself relies on the Least-upper-bound Axiom. (This is why those claims are non-trivial.)

In your *mathematical analysis* course, the Least-upper-bound Axiom serves as the ultimate justification for other 'intuitively obvious' results which you have been using without questioning in *infinitesimal calculus*, such as:

- the Bounded-Monotone Theorem for infinite sequences of real numbers,
- \bullet the $\mathbf{Intermediate-Value\ Theorem},$ and
- the Mean-Value Theorem.