
1. Definition.
Let S be a subset of R.

(a) Let λ ∈ S.

λ is said to be a
{

greatest
least

}
element of S if, for any x ∈ S,

{
x ≤ λ
x ≥ λ

}
.

(b) S is said to have a
{

greatest
least

}
element if there exists some λ ∈ S such that for any

x ∈ S,
{
x ≤ λ
x ≥ λ

}
.

Remarks.
(A) ‘If it exists then it is unique’:

(B) Notation. We denote the
{

greatest
least

}
element of S by

{
max(S)
min(S)

}
.

(C) Terminology. We may choose to write
‘S has a greatest element’

as
max(S) exists’.

Et cetera. The situation is analogous for least element.
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2. Definition.
Let S be a subset of R.

(a) Let β ∈ R.

β is said to be a(n)
{

upper
lower

}
bound of S in R if, for any x ∈ S,

{
x ≤ β
x ≥ β

}
.

(b) S is said to be bounded
{

above
below

}
in R if there exists some β ∈ R such that for

any x ∈ S,
{
x ≤ β
x ≥ β

}
.

(c) S is said to be bounded in R if S is bounded above in R and bounded below in R.

Remarks.
(A) If S has one upper bound then it has infinitely many upper bounds.

It does not make sense to write ‘the upper bound of S is so-and-so’.
The situation is similar for ‘being bounded below’.

(B) Suppose λ is a greatest element of S. Then λ is an upper bound of S.
(How about its converse?)
The situation is similar for ‘least element’ and ‘lower bound’.
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3. Example (A). (Well-ordering Principle for Integers.)
Recall this statement below, known as the Well-ordering Principle for Integers (WOPI):

Let S be a non-empty subset of N. S has a least element.

There are various re-formulations of the statement (WOPI):
• (WOPIL) Let T be a non-empty subset of Z.

Suppose T is bounded below in R by some β ∈ Z.
Then T has a least element.

• (WOPIG) Let U be a non-empty subset of Z.
Suppose U is bounded above in R by some γ ∈ Z.
Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an
exercise.)

From now on all three of them are referred to as the Well-ordering Principle for Integers.
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5. Example (C).
Let

S = {x ∈ R : x2 ≤ (
√
2 + 1)x−

√
2},

and T = S\Q.
(S is in fact the solution set of the inequality

x2 ≤ (
√
2 + 1)x−

√
2

with unknown x in the reals.)

(a) S has a greatest element and S has a least element.

Proof.
• Note that S = [1,

√
2].

S has a greatest element, namely
√
2.

S has a least element, namely 1.

(b) S is bounded above and below in R.

Proof.
• S has a least element and a greatest element.

They are respectively a lower bound and an upper bound of S in R.
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Example (C).
Let S = {x ∈ R : x2 ≤ (

√
2 + 1)x−

√
2}, and T = S\Q.

(c) T has a greatest element, and T has no least element.
Proof.
• Note that T = [1,

√
2]\Q.

• We have
√
2 ∈ [1,

√
2], and

√
2 is irrational. Then

√
2 ∈ T .

Pick any x ∈ T .
By definition, 1 ≤ x ≤

√
2 and x is irrational. In particular x ≤

√
2.

Therefore, by definition,
√
2 is a greatest element of T .

• Suppose T had a least element, say, λ. By definition, λ is irrational and 1 ≤ λ ≤
√
2.

Since λ is irrational, λ ̸= 1. Then λ > 1.
Define x0 =

1 + λ

2
. By definition, 1 < x0 < λ ≤

√
2.

Moreover x0 is irrational. (Why? Fill in the detail.)
Then x0 ∈ T . But x0 < λ and λ is a least element of T . Contradiction arises.

(d) T is bounded above and below in R.
Proof.
• T has a least element. It is a lower bound of T in R.
• By definition, for any x ∈ T , x ≤

√
2. Then

√
2 is an upper bound of T in R.
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6. Example (D).

Let S =

{
1

m + 1
+

1

n + 1

∣∣∣∣ m,n ∈ N

}
.

(a) S has a greatest element and S has no least element.
(b) S is bounded above and below in R.
Proof of (a).
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Example (D).

Let S =

{
1

m + 1
+

1

n + 1

∣∣∣∣ m,n ∈ N

}
.

(a) S has a greatest element and S has no least element.
(b) S is bounded above and below in R.
Proof of (a).
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7. Example (B) re-visited for a special observation.
Re-consider each subset S of R studied in Example (B):

(a) If S is bounded below in R, then its lower bounds seem to form the closed interval
(−∞, 0], with greatest element, 0.
We may refer to the number 0 as the greatest amongst all lower bounds of S in R, or
simply, a greatest lower bound of S in R.
(This claim is easy to verify.)

S
least
element?

bounded
below
in R?

set of
all lower
bounds?

greatest
lower
bound?

[0, 1) 0 Yes (by 0) (−∞, 0] 0

[0,+∞) 0 Yes (by 0) (−∞, 0] 0

(0,+∞) nil Yes (by 0) (−∞, 0] 0

[0, 1)∩Q 0 Yes (by 0) (−∞, 0] 0

[0,+∞)∩Q 0 Yes (by 0) (−∞, 0] 0

[0, 1)\Q nil Yes (by 0) (−∞, 0] 0

[0,+∞)\Q nil Yes (by 0) (−∞, 0] 0
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Example (B) re-visited for a special observation.
Re-consider each subset S of R studied in Example (B):

(a) ...
(b) If S is bounded above in R, then its upper bounds seem to form a closed interval of

the form [1,+∞), with least element 1.
We may refer to the number 1 as the least amongst all upper bounds of S in R, or
simply, a least upper bound of S in R.

S
least
element?

greatest
element?

bounded
below
in R?

bounded
above
in R?

set of
all lower
bounds?

set of
all upper
bounds?

greatest
lower
bound?

least
upper
bound?

[0, 1) 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞) 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
(0,+∞) nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)∩Q 0 nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)∩Q 0 nil Yes (by 0) No (−∞, 0] ∅ 0 nil
[0, 1)\Q nil nil Yes (by 0) Yes (by 1) (−∞, 0] [1,+∞) 0 1

[0,+∞)\Q nil nil Yes (by 0) No (−∞, 0] ∅ 0 nil

Remark. The verification of the claim (♯) is non-trivial:
(♯) The set of all upper bounds of the set [0, 1) ∩ Q is [1,+∞).
The other two claims are easy to verify.
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8. Example (C) re-visited for a special observation.
Re-consider Example (C), in which

S = {x ∈ R : (
√
2 + 1)x−

√
2} = [1,

√
2], T = S\Q.

(a) The lower bounds of S form the closed interval (−∞, 1], with greatest element 1. (This
claim is easy to verify.)
We refer to the number 1 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval [
√
2,+∞), with least element

√
2.

(This claim is easy to verify.)
We refer to the number

√
2 as the least upper bound of S.

(c) The lower bounds of T form the closed interval of the form (−∞, 1], with greatest
element 1. (This claim is easy to verify.)
We refer to the number 1 as the greatest lower bound of T .

(d) The upper bounds of T form the closed interval of the form [
√
2,+∞), with least

element
√
2. (The verification of this claim is non-trivial.)

We refer to the number
√
2 as the least upper bound of T .
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9. Example (D) re-visited for a special observation.
Re-consider Example (D), in which

S =

{
1

m + 1
+

1

n + 1

∣∣∣∣ m,n ∈ N

}
.

(a) The lower bounds of S form the closed interval (−∞, 0], with greatest element 0. (The
verification of this claim is non-trivial.)
We refer to the number 0 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval [2,+∞), with least element 2. (This
claim is easy to verify.)
We refer to the number 2 as the least upper bound of S.
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10. The phenomena discovered in the re-considerations of Examples (B), (C), (D) motivate
the definitions for the notion of supremum, infimum below.

Definition.
Let S be a subset of R, and σ be a real number.

Suppose S is
{

bounded above
bounded below

}
in R, and σ is a(n)

{
upper bound
lower bound

}
of S in R.

Then we say that σ is a(n)
{

supremum
infimum

}
of S in R if σ is the

{
least element

greatest element

}
of the set of all

{
upper bounds
lower bounds

}
of S in R.

Remarks.
(A) If S has a supremum in R, it is the unique supremum of S in R. Et cetera.

(B) Notation. We denote the
{

supremum
infimum

}
of S by

{
sup(S)
inf(S)

}
.

(C) Terminology. We may choose to write ‘S has a supremum’ as sup(S) exists’. Et
cetera. The situation is analogous for infimum.
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11. You may write down any non-empty subset of R you like, and will find that if the set
concerned is bounded above/below in R, it seems to have a supremum/infimum in R.

This provides evidence for the Least-upper-bound Axiom, which is a fundamental
property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).
Let A be a non-empty subset of R. Suppose A is bounded above in R.
Then A has a supremum in R.

The statement (LUBA) is logically equivalent to the equally ‘obvious’ statement:
‘Greatest-lower-bound Axiom for the reals’ (GLBA).
Let A be a non-empty subset of R. Suppose A is bounded below in R.
Then A has an infimum in R.
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Remarks.
(a) The statements (LUBA), (GLBA) indeed logically equivalent.

The proof is left as an exercise.

(b) The verifications for the non-trivial claims in the re-consideration of Examples (B),
(C), (D) require the application of a heuristically obvious but non-trivial result about
the real number system known as:

Archimedean Principle (AP).
For any positive real number ε, there exists some positive integer N such that Nε > 1.

The validity of the Archimedean Principle itself relies on the Least-upper-bound Axiom.
(This is why those claims are non-trivial.)

In your mathematical analysis course, the Least-upper-bound Axiom serves as the ulti-
mate justification for other ‘intuitively obvious’ results which you have been using without
questioning in infinitesimal calculus, such as:
• the Bounded-Monotone Theorem for infinite sequences of real numbers,
• the Intermediate-Value Theorem, and
• the Mean-Value Theorem.
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