1. Definition.
Let S be a subset of IR.

(a) Let A € S.
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least
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Remarks.
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(B) Notation. We denote the element of S by . .
least min(S)

} element if there exists some A € S such that for any
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(C) Terminology. We may choose to write
S has a greatest element’
as
max(S) exists’

Et cetera. The situation is analogous for least element.



2. Definition.
Let S be a subset of IR.

(a) Let 8 € R.

S upper : . x < p
B is said to be a(n) { lower } bound of S in R if, for any x € S, { v > }

above

(b) S is said to be bounded { below

r < f3
any r € 9, {5625}
(c) S is said to be bounded in R if S is bounded above in IR and bounded below in R.

} in R if there exists some 8 € IR such that for

Remarks.

(A) If S has one upper bound then it has infinitely many upper bounds.
[t does not make sense to write ‘the upper bound of S is so-and-so’.
The situation is similar for ‘being bounded below’.

(B) Suppose X is a greatest element of S. Then X is an upper bound of S.
(How about its converse?)

The situation is similar for ‘least element’” and ‘lower bound’.



3. Example (A). (Well-ordering Principle for Integers.)
Recall this statement below, known as the Well-ordering Principle for Integers (WOPI):

Let S be a non-empty subset of N. S has a least element.

There are various re-formulations of the statement (WOPI):

e (WOPIL) Let T be a non-empty subset of Z.
Suppose 1" is bounded below in IR by some 8 € Z.
Then T' has a least element.

o (WOPIG) Let U be a non-empty subset of Z.
Suppose U is bounded above in R by some v € Z.
Then U has a greatest element.

(The proof for the logical equivalence of (WOPI), (WOPIL), (WOPIG) is left as an

exercise.

From now on all three of them are referred to as the Well-ordering Principle for Integers.



4. Example (B).
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(Aa): [0,1) has a least element, namely, () -
Proof. Wete S=fo,1).
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(Ad): [0, 1) is bounded above in R by | .
Proof. \ite S=(o,1) .
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(AD): [0,1) has no greatest element.
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(Bb): [0, 400) has no greatest element
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(Bd): [0, +00) is not bounded above in IR.
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:Exaﬁqﬂe (B).
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5. Example (C).
Let
S={recR:2?> < (V24 Da -2},
and T = S\Q.
(S is in fact the solution set of the inequality

? < (V2+ 1)z — V2

with unknown z in the reals.)

(a) S has a greatest element and S has a least element.

Proof.
e Note that S = [1,v/2].

S has a greatest element, namely v/2.
S has a least element, namely 1.

(b) S is bounded above and below in IR.
Proof.

« S has a least element and a greatest element.
They are respectively a lower bound and an upper bound of S in IR.



Example (C). 5 = L\’ ﬁl

Let S={z €R: 2% < (V24 D)z — 3}, and T = S\Q T=-D.ENNE

(¢) T has a greatest element, and T has no least element. ?dgb,?b iymmwwjz‘
Proof. R —— b
e Note that T = [1,v/2]\Q. Ly b wee~ |, &

e We have v/2 € [1,/2], and v/2 is irrational. Then v/2 € T
Mkt Pick any v € T
ffg }(\W By definition, 1 < x < V2 and z is irrational. In particular x < V2.
f;?fér Therefore, by definition, v/2 is a greatest element of 7.

e Suppose T had a least element, say, A. By definition, \ is irrational and 1 < \ < /2.

Since A is irrational, A # 1. Then A > 1.

1+ A
Define xy = % By definition, 1 < zp < A < v/2.

Moreover xy is irrational. (Why? Fill in the detail.)
Then xg € T'. But xg < X and ) is a least element of 1. Contradiction arises.

(d) T is bounded above and below in R.
Proof.

 T" has a least element. It is a lower bound of 1" in IR.
e By definition, for any z € T, x < /2. Then v/2 is an upper bound of T in IR.



6. Example (D).

1 1
Let S = + m,n €N ;.
m+1 n+1

(a) S has a greatest element and S has no least element

(b) S is bounded above and below in IR.
Proof of (a).
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(a) S has a greatest element and S has no least element.
(b) S is bounded above and below in IR.

Proof of (a).
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7. Example (B) re-visited for a special observation.
Re-consider each subset S of IR studied in Example (B):

(a) If S is bounded below in IR, then its lower bounds seem to form the closed interval
(—00, 0], with greatest element, 0.

We may refer to the number 0 as the greatest amongst all lower bounds of S in R, or
simply, a greatest lower bound of S in IR.

(This claim is easy to verify.)

bounded set of greatest
least

S lement? below all lower | | lower

© ' in IR? bounds? | | bound?
0,1) 0 Yes (by 0) | | (—o0, 0] 0
0, +00) 0 Yes (by 0) | | (—o0,0] 0
(0, +00) nil Yes (by 0) | | (—o0,0] 0
0,1)NQ 0 Yes (by 0)| | (—o0, 0] 0
0, +00)NQ 0 Yes (by 0) | | (—o0, 0] 0
0, D\Q nil Yes (by 0)| | (—o0, 0] 0
[0, +00)\ @ nil Yes (by 0) | | (—o0,0] 0



Example (B) re-visited for a special observation.

Re-consider each subset S of IR studied in Example (B):

(a) ...

(b) If S is bounded above in R, then its upper bounds seem to form a closed interval of
the form |1, +00), with least element 1.

We may refer to the number 1 as the least amongst all upper bounds of S in R, or

simply, a least upper bound of S in IR.

least ereatest bounded | bounded | set of set of greatest | least
S cloment? | olement? below above all lower | all upper | lower upper
| in IR? in R? bounds? | bounds? | bound? | bound?
0,1) 0 nil | Yes (by 0)| Yes (by 1) | (—o00,0] | [1,+0o0) 0 1
[0, +00) 0 nil | Yes (by 0) No (—o0, 0] 0 0 nil
(0, 4+00) nil nil | Yes (by 0) No (—o0, 0] 0 0 nil
0,1)NQ 0 nil | Yes (by 0)| Yes (by 1)| (—00,0] | [1,400) 0 1
0, +00)NQ 0 nil | Yes (by 0) No (—o0, 0] 0 0 nil
0, 1)\Q nil nil | Yes (by 0)| Yes (by 1)| (—o00,0] | [1,400) 0 1
[0, +00)\ @ nil nil | Yes (by 0) No (—00, 0] 0 0 nil
Remark. The verification of the claim () is non-trivial:

(#) The set of all upper bounds of the set [0,1) N Q is [1, +00).

The other two claims are easy to verify.



8. Example (C) re-visited for a special observation.

Re-consider Example (C), in which

S={zecR:(V2+1)z—-v2}=[1,v2], T=5\Q

(a) The lower bounds of .S form the closed interval (—oo, 1], with greatest element 1. (This
claim is easy to verify.)

We refer to the number 1 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval [v/2, 4-00), with least element /2.
(This claim is easy to verify.)

We refer to the number v/2 as the least upper bound of S.

(¢c) The lower bounds of T form the closed interval of the form (—oo, 1], with greatest
element 1. (This claim is easy to verify.)

We refer to the number 1 as the greatest lower bound of T

(d) The upper bounds of T form the closed interval of the form [v/2,400), with least
element v/2. (The verification of this claim is non-trivial.)

We refer to the number v/2 as the least upper bound of 7.



9. Example (D) re-visited for a special observation.

Re-consider Example (D), in which

1 1
S = + m,n €N ;.
m-+1 n-+1

(a) The lower bounds of S form the closed interval (—oo, 0], with greatest element 0. (The
verification of this claim is non-trivial.)

We refer to the number 0 as the greatest lower bound of S.

(b) The upper bounds of S form the closed interval |2, +00), with least element 2. (This
claim is easy to verify.)

We refer to the number 2 as the least upper bound of S.



10. The phenomena discovered in the re-considerations of Examples (B), (C), (D) motivate
the definitions for the notion of supremum, infimum below.

Definition.
Let S be a subset of IR, and o be a real number.
bounded above upper bound

Suppose S Is { botnded be]ow} in IR, and o is a(n) { lower bound } of S in IR.

least element
greatest element

supremum

Then we say that o is a(n) { infimum

}ofSin IRifajsthe{

upper bounds
lower bounds

of the set of all { } of S in R.

Remarks.

(A) If S has a supremum in R, it is the unique supremum of S in IR. Et cetera.

(B) Notation. We denote the { SUPTEIIUM } of S by { sup(5) }

infimum inf(,S)

(C) Terminology. We may choose to write ‘S has a supremum’ as sup(.S) exists. Et
cetera. The situation is analogous for infimum.



11. You may write down any non-empty subset of IR you like, and will find that if the set
concerned is bounded above/below in IR, it seems to have a supremum /infimum in IR.

This provides evidence for the Least-upper-bound Axiom. which is a fundamental
property of the real number system.

Least-upper-bound Axiom for the reals (LUBA).
Let A be a non-empty subset of R. Suppose A is bounded above in IR.
Then A has a supremum in R.

The statement (LUBA) is logically equivalent to the equally ‘obvious’ statement:
‘Greatest-lower-bound Axiom for the reals’ (GLBA).

Let A be a non-empty subset of IR. Suppose A is bounded below in IR.

Then A has an infimum in R.



Remarks.

(a) The statements (LUBA), (GLBA) indeed logically equivalent.
The proof is left as an exercise.

(b) The verifications for the non-trivial claims in the re-consideration of Examples (B),
(C), (D) require the application of a heuristically obvious but non-trivial result about
the real number system known as:

Archimedean Principle (AP).
For any positive real number €, there exists some positive integer N such that Ne > 1.

The validity of the Archimedean Principle itself relies on the Least-upper-bound Axiom.
(This is why those claims are non-trivial.)

In your mathematical analysis course, the Least-upper-bound Axiom serves as the ulti-
mate justification for other ‘intuitively obvious’ results which you have been using without
questioning in infinitesimal calculus, such as:

» the Bounded-Monotone Theorem for infinite sequences of real numbers,
 the Intermediate-Value Theorem, and

« the Mlean-Value Theorem.





