
1. Definitions. (Arithmetic mean, geometric mean and harmonic mean.)
Let n ∈ N\{0}. Let a1, a2, · · · , an be n positive real numbers.

(a) The number
a1 + a2 + · · · + an

n
is called the arithmetic mean of a1, a2, · · · , an.

(b) The number
n
√
a1a2 · ... · an

is called the geometric mean of a1, a2, · · · , an.
(c) The number [

1

n

(
1

a1
+

1

a2
+ · · · + 1

an

)]−1

is called the harmonic mean of a1, a2, · · · , an.

Remark. By definition, the harmonic mean of a1, a2, · · · , an is the reciprocal of
the arithmetic mean of the reciprocals of a1, a2, · · · , an.
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2. Theorem (1). (Arithmetico-geometrical Inequality.)
Let m ∈ N\{0}. Let a1, a2, · · · , am be m posiitve real numbers.
The inequality

a1 + a2 + · · · + am
m

≥ m
√
a1a2 · ... · am

holds. Equality holds iff a1 = a2 = · · · = am.

3. Corollary (2).
Let m ∈ N\{0}. Let a1, a2, · · · , am be m positive real numbers.
The inequality[

1

m

(
1

a1
+

1

a2
+ · · · + 1

am

)]−1

≤ m
√
a1a2 · ... · am ≤ a1 + a2 + · · · + am

m

holds. Each equality holds iff a1 = a2 = · · · = am.

4. Lemma (3). (‘Special case’ of Theorem (1): ‘for two positive numbers’.)
Suppose u, v are positive real numbers.

Then the inequality u + v

2
≥

√
uv holds. Equality holds iff u = v.
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5. Illustration of the key idea in the proof of Theorem (1).

(a) We prove the statement (♯) below, which is the ‘inequality part’ of the ‘special case’
of Theorem (1) ‘for four positive numbers’:

(♯) Suppose a, b, c, d are positive real numbers. Then a + b + c + d

4
≥ 4

√
abcd.

Proof of the statement (♯).
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Illustration of the key idea in the proof of Theorem (1).

(a) We prove the statement (♯) below:

(♯) Suppose a, b, c, d are positive real numbers. Then a + b + c + d

4
≥ 4

√
abcd.

(b) With the help of the statement (♯), we deduce the statement (♭) below, which is the
‘inequality part’ of the ‘special case’ of Theorem (1) ‘for three positive numbers’:

(♭) Suppose r, s, t are positive real numbers. Then r + s + t

3
≥ 3

√
rst.

Proof of the statement (♭).
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9. Proof of Theorem (1).
Denote by Q(m) the proposition below:
• Suppose a1, a2, · · · , am are positive real numbers.

Then (a1a2 · ... · am)
1
m ≤ a1 + a2 + · · · + am

m
.

Equality holds iff a1 = a2 = · · · = am.
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10. ‘Backward induction’ method.
The argument above for the Arithmetico-geometrical Inequality is an example of ‘back-
ward induction’.
Recall this convention on notation:
• Suppose N ∈ Z. Then JN,+∞) stands for the set {x ∈ Z : x ≥ N}.

Theorem (7). (‘Principle of “Backward induction”’.)
Let Q(n) be a predicate with variable n. Let {An}∞n=0 be a strictly increasing sequence
of integers.
Suppose that all of (†), (‡), (⋆) are true:
(†) The statement Q(A0) is true.
(‡) For any k ∈ N, if the statement Q(Ak) is true then the statement Q(Ak+1) is true.
(⋆) For any m ∈ JA0,+∞), if the statement Q(m) is true then the statement Q(m−1)

is true.
Then the statement Q(n) is true for any n ∈ JA0,+∞).
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Theorem (8). (Set-theoretic formulation of ‘Principle of “Backward
induction”’.)
Let T be a subset of JA0,+∞). Let {An}∞n=0 be a strictly increasing sequence of
integers.
Suppose that all of (†), (‡), (⋆) are true:
(†) A0 ∈ T .
(‡) For any k ∈ N, if Ak ∈ T then Ak+1 ∈ T .
(⋆) For any m ∈ JA0,+∞), if m ∈ T then m− 1 ∈ T .
Then T = JA0,+∞).

The proofs of Theorem (7), Theorem (8) are left as exercises.

As statements, Theorem (7) and Theorem (8) are logically equivalent.

Theorem (7) suggests a scheme in its application; write down the scheme as an exercise.

(A concrete example on how the scheme works is illustrated by the argument in Lemma
(4) and Lemma (5).)
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