Definitions. (Arithmetic mean, geometric mean and harmonic mean.)
 Let n ∈ N\{0}. Let a₁, a₂, · · · , a_n be n positive real numbers.
 (a) The number

$$\frac{a_1 + a_2 + \dots + a_n}{n}$$

is called the **arithmetic mean** of a_1, a_2, \cdots, a_n . (b) The number

$$\sqrt[n]{a_1a_2\cdot\ldots\cdot a_n}$$

is called the **geometric mean** of a_1, a_2, \cdots, a_n . (c) The number

$$\left[\frac{1}{n}\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right)\right]^{-1}$$

is called the **harmonic mean** of a_1, a_2, \cdots, a_n .

Remark. By definition, the harmonic mean of a_1, a_2, \dots, a_n is the reciprocal of the arithmetic mean of the reciprocals of a_1, a_2, \dots, a_n .

2. Theorem (1). (Arithmetico-geometrical Inequality.) Let $m \in \mathbb{N} \setminus \{0\}$. Let a_1, a_2, \dots, a_m be m posiitve real numbers. The inequality

$$\frac{a_1 + a_2 + \dots + a_m}{m} \ge \sqrt[m]{a_1 a_2 \cdot \dots \cdot a_m}$$

holds. Equality holds iff $a_1 = a_2 = \cdots = a_m$.

3. Corollary (2).

Let $m \in \mathbb{N} \setminus \{0\}$. Let a_1, a_2, \dots, a_m be m positive real numbers. The inequality

$$\left[\frac{1}{m}\left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_m}\right)\right]^{-1} \le \sqrt[m]{a_1a_2 \cdot \dots \cdot a_m} \le \frac{a_1 + a_2 + \dots + a_m}{m}$$

holds. Each equality holds iff $a_1 = a_2 = \cdots = a_m$.

4. Lemma (3). ('Special case' of Theorem (1): 'for two positive numbers'.) Suppose u, v are positive real numbers.

Then the inequality $\frac{u+v}{2} \ge \sqrt{uv}$ holds. Equality holds iff u = v.

5. Illustration of the key idea in the proof of Theorem (1).

(a) We prove the statement (♯) below, which is the 'inequality part' of the 'special case' of Theorem (1) 'for four positive numbers':

(\sharp) Suppose a, b, c, d are positive real numbers. Then $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$.

Proof of the statement (\sharp) .

This is
let a, b, c, d be positive real numbers.
This is
actually
the
argument
for the
nequality
part of
Lemma(s).
Let a, b, c, d be positive real numbers.
(Ja, Jb, Jab are well-defined, and
$$a = (Ja)^2$$
, $b = (Jb)^2$, Jab = Ja Jb.
There are $a + b = (Ja)^2 + (Jb)^2 \ge 2 Ja \cdot Jb = 2 Jab$.
Therefore $\frac{a + b}{2} \ge Jab$.
Nor, once again applying the same argument above, we have
 $\frac{a + b + c + d}{4} = \frac{1}{2} \left(\frac{a + b}{2} + \frac{c + d}{2} \right)$
 $\ge \frac{1}{2} \left(Jab + Jab \right) \ge Jab \cdot Jab = Jab d$.

Illustration of the key idea in the proof of Theorem (1).

(a) We prove the statement (\ddagger) below:

(\sharp) Suppose a, b, c, d are positive real numbers. Then $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$.

(b) With the help of the statement (\$\$), we deduce the statement (\$\$) below, which is the 'inequality part' of the 'special case' of Theorem (1) 'for three positive numbers':

(b) Suppose r, s, t are positive real numbers. Then $\frac{r+s+t}{3} \ge \sqrt[3]{rst}$.

Proof of the statement
$$(\flat)$$
.

Let r, s, t be positive teal numbers.
Define
$$u = \frac{r+s+t}{3}$$
. Note that u is also a positive teal number.
By (#), we have $\frac{r+s+t+u}{4} \ge \frac{4}{5} \sqrt{rstu}$.
Note that $\frac{r+s+t+u}{4} \ge \frac{r+s+t+(r+s+t)/3}{4} = \frac{r+s+t}{3} \ge u$.
Then $u \ge \frac{r+s+t+u}{4} \ge \frac{4}{5} \sqrt{rstu} = \frac{4}{5} \sqrt{rst}$.
Note that $\frac{4}{5} \sqrt{u} > 0$. Then $(\frac{4}{5} \sqrt{u})^3 \ge \frac{4}{5} \sqrt{st}$.
Therefore $\frac{r+s+t}{3} \ge u = [(\frac{4}{5} \sqrt{u})^3]^{\frac{4}{3}} \ge (\frac{4}{5} \sqrt{rst})^{\frac{4}{3}} = \frac{3}{5} \sqrt{rst}$.

6 Lemma (4). (Many 'special cases' of Theorem (1): 'for 2^n positive numbers'.)

Let $n \in \mathbb{N}$. Let a_1, a_2, \dots, a_{2^n} be 2^n positive real numbers. The inequality $\frac{a_1 + a_2 + \dots + a_{2^n}}{2^n} \ge \sqrt[2^n]{a_1 a_2 \cdot \dots \cdot a_{2^n}}$ holds. Equality holds iff $a_1 = a_2 = \dots = a_{2^n}$. Proof? Apply mathematical induction.

- 7. Lemma (5). ('Backward Induction' Lemma.) Denote by Q(m) the proposition below:
- Suppose a₁, a₂, ..., a_m are positive real numbers. Then (a₁a₂ · ... · a_m)^{1/m} ≤ a₁ + a₂ + ··· + a_m/m. Equality holds iff a₁ = a₂ = ··· = a_m. Let p ∈ N\{0}. Suppose Q(p + 1) is true. Then Q(p) is true. Proof? Initate the argument for deducing Q(3) from Q(4).
 8. Lemma (6). Let k ∈ N\{0,1}. There exists some h ∈ N so that 2^h < k ≤ 2^{h+1}. Proof? Apply the Well-ordering Principle for Integers.

9. Proof of Theorem (1).

Denote by Q(m) the proposition below:

• Suppose
$$a_1, a_2, \dots, a_m$$
 are positive real numbers.
Then $(a_1a_2 \dots a_m)^{\frac{1}{m}} \leq \frac{a_1 + a_2 + \dots + a_m}{m}$.
Equality holds iff $a_1 = a_2 = \dots = a_m$.
 $Q(1)$ is (trivially) true. (Why?)
By Lemma(4), $Q(2^M)$ is true for any MEN.
Pick any KEN $\{0, 1\}$. [Ask : Is $Q(k)$ true?]
By Lemma(6), there exists some hEN such that $2^h < k \leq 2^{h+1}$.
By Lemma(6), there exists some hEN such that $2^h < k \leq 2^{h+1}$.
By Lemma(5), since $Q(2^{h+1})$ is true, $Q(2^{h+1} - 1)$ is also true.
Then, tepeatedly applying Lemma(5), we deduce in succession that
 $Q(2^{h+1}-2)$ is true, $Q(2^{h+1}-3)$ is true, ..., $Q(h_1)$ is true, and
 $Q(k)$ is true. [This is a repeated application of Modus Ponens.]
It follows that $Q(m)$ is true for any MEN $\{0, 1\}$.

10. 'Backward induction' method.

The argument above for the Arithmetico-geometrical Inequality is an example of 'back-ward induction'.

Recall this convention on notation:

• Suppose $N \in \mathbb{Z}$. Then $[N, +\infty)$ stands for the set $\{x \in \mathbb{Z} : x \ge N\}$.

Theorem (7). ('Principle of "Backward induction"'.)

Let Q(n) be a predicate with variable n. Let $\{A_n\}_{n=0}^{\infty}$ be a strictly increasing sequence of integers.

Suppose that all of (\dagger) , (\ddagger) , (\bigstar) are true:

- (†) The statement $Q(A_0)$ is true.
- (‡) For any $k \in \mathbb{N}$, if the statement $Q(A_k)$ is true then the statement $Q(A_{k+1})$ is true.
- (*) For any $m \in [A_0, +\infty)$, if the statement Q(m) is true then the statement Q(m-1) is true.

Then the statement Q(n) is true for any $n \in [A_0, +\infty)$.

Theorem (8). (Set-theoretic formulation of 'Principle of "Backward induction"'.)

Let T be a subset of $[A_0, +\infty)$. Let $\{A_n\}_{n=0}^{\infty}$ be a strictly increasing sequence of integers.

Suppose that all of (\dagger) , (\ddagger) , (\bigstar) are true:

(†) $A_0 \in T$. (‡) For any $k \in \mathbb{N}$, if $A_k \in T$ then $A_{k+1} \in T$. (*) For any $m \in [A_0, +\infty)$, if $m \in T$ then $m - 1 \in T$. Then $T = [A_0, +\infty)$.

The proofs of Theorem (7), Theorem (8) are left as exercises.

As statements, Theorem (7) and Theorem (8) are logically equivalent.

Theorem (7) suggests a scheme in its application; write down the scheme as an exercise.

(A concrete example on how the scheme works is illustrated by the argument in Lemma (4) and Lemma (5).)