
0. Refer to the Handout Quadratic polynomials.
1. Definition. (Absolute extrema for real-valued functions of one real vari-

able.)
Let I be an interval, and h : D −→ R be a real-valued function of one real variable with
domain D which contains I as a subset entirely. Let p be a point in I .

(a) h is said to attain absolute maximum at p on I if for any x ∈ I , the inequality
h(x) ≤ h(p) holds.
The number h(p) is called the absolute maximum value of h on I .

(b) h is said to attain absolute minimum at p on I if for any x ∈ I , the inequality
h(x) ≥ h(p) holds.
The number h(p) is called the absolute minimum value of h on I .
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2. Theorem (1). (Absolute extrema for quadratic functions.)
Let a, b, c ∈ R, with a ̸= 0.
Let f : R −→ R be the quadratic function given by f (x) = ax2 + bx + c for any x ∈ R.
Denote the discriminant of f (x) by ∆f .

(a) Suppose a > 0. Then f attains absolute minimum at − b

2a
on R, with absolute minimum

value −∆f

4a
.

(b) Suppose a < 0. Then f attains absolute maximum at − b

2a
on R, with absolute maximum

value −∆f

4a
.

Proof of (a). Let a, b, c ∈ R, with a > 0. Let f : R −→ R be the quadratic function
given by f (x) = ax2 + bx + c for any x ∈ R. Denote the discriminant of f (x) by ∆f
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3. Theorem (2), as a Corollary to Theorem (1).
Let a, b, c ∈ R.
Suppose a > 0, ∆f = b2 − 4ac, and f : R −→ R is the quadratic polynomial function
defined by f (x) = ax2 + bx + c for any x ∈ R.
Then the statements (†), (‡) are logically equivalent:
(†) f (x) ≥ 0 for any x ∈ R.
(‡) ∆f ≤ 0.

Equality in (‡) holds iff − b

2a
is a repeated real root of the polynomial f (x).

Remark. This result will play a key role in the proof of the Cauchy-Schwarz Inequality.
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4. Theorem (3). (Cauchy-Schwarz Inequality for ‘real vectors’.)
Let x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R.
Suppose x1, x2, · · · , xn are not all zero and y1, y2, · · · , yn are not all zero.
Then the statements below hold:

(a) The inequality

∣∣∣∣∣∣
n∑

j=1

xjyj

∣∣∣∣∣∣ ≤
 n∑

j=1

xj
2

1
2
 n∑

j=1

yj
2

1
2

holds.

(b) The statements (⋆1), (⋆2) are logically equivalent:

(⋆1)

∣∣∣∣∣∣
n∑

j=1

xjyj

∣∣∣∣∣∣ =
 n∑

j=1

xj
2

1
2
 n∑

j=1

yj
2

1
2

.

(⋆2) There exist some p, q ∈ R\{0} such that px1 + qy1 = 0, px2 + qy2 = 0, ..., and
pxn + qyn = 0.
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Remarks.
(1) In the context of the statement of Theorem (3), if

(x1 = x2 = · · · = xn = 0 or y1 = y2 = · · · = yn = 0),
then the inequality in (a) trivially reduces to the equality in (⋆1) of (b).

(2) We may re-formulate Theorem (3) in the language of linear algebra, and cover the trivial
cases mentioned above:

Let x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R.

Suppose x, y are vectors in Rn defined by x =


x1
x2
...
xn

, y =


y1
y2
...
yn

.

Then the statements below hold:

(a) |⟨x,y⟩| ≤ ∥x∥ ∥y∥.

(b) Equality holds iff x, y are linearly dependent over R.
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5. Theorem (4). (Triangle Inequality for ‘real vectors’.)
Let x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R.
Suppose x1, x2, · · · , xn are not all zero and y1, y2, · · · , yn are not all zero.
Then the statements below hold:

(a) The inequality

 n∑
j=1

(xj + yj)
2

1
2

≤

 n∑
j=1

xj
2

1
2

+

 n∑
j=1

yj
2

1
2

holds.

(b) The statements (∗1), (∗2) are logically equivalent:

(∗1)

 n∑
j=1

(xj + yj)
2

1
2

=

 n∑
j=1

xj
2

1
2

+

 n∑
j=1

yj
2

1
2

.

(∗2) There exist s > 0, t > 0 such that sx1 = ty1, sx2 = ty2, ..., and sxn = tyn.
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Remarks.
(1) In the context of the statement of Theorem (4), if

(x1 = x2 = · · · = xn = 0 or y1 = y2 = · · · = yn = 0),
then the inequality in (a) trivially reduces to the equality in (⋆1) of (b).

(2) We may re-formulate Theorem (4) in the language of linear algebra, and cover the trivial
cases described above:

Let x1, x2, · · · , xn, y1, y2, · · · , yn ∈ R.

Suppose x, y are vectors in Rn defined by x =


x1
x2
...
xn

, y =


y1
y2
...
yn

.

Then the statements below hold:

(a) ∥x + y∥ ≤ ∥x∥ + ∥y∥.

(b) Equality holds iff one of x, y is a non-negative scalar multiple of the other.
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6. Proof of Theorem (3): ‘special case “n = 2” ’ only.
Let x1, x2, y1, y2 ∈ R. Suppose x1, x2 are not all zero and y1, y2 are not all zero.

(a) Define the function F : R −→ R by F (t) = (x1t + y1)
2 + (x2t + y2)

2 for any t ∈ R.
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Proof of Theorem (3): ‘special case “n = 2” ’ only.
Let x1, x2, y1, y2 ∈ R. Suppose x1, x2 are not all zero and y1, y2 are not all zero.

(a) Define the function F : R −→ R by F (t) = (x1t+ y1)
2 + (x2t+ y2)

2 for any t ∈ R. · · ·
(b) i. [(⋆1) =⇒ (⋆2)?]

Suppose |x1y1 + x2y2| = (x1
2 + x2

2)
1
2(y1

2 + y2
2)

1
2 .

ii. [(⋆2) =⇒ (⋆1)?]
Suppose there exist some p, q ∈ R\{0} such that px1 + qy1 = 0 and px2 + qy2 = 0.
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7. Proof of Theorem (4). Exercise.

8. There is a pair of results about definite integrals which is known as the Cauchy-Schwarz
Inequality and the Triangle Inequality.
They can be proved in a similar way as Theorem (3), Theorem (4) respectively, with the
extra help of a result on definite integrals:
Theorem (5).
Let a, b be real numbers, with a < b, and h : [a, b] −→ R be a function.
Suppose h is continuous on [a, b] and h(u) ≥ 0 for any u ∈ [a, b].

Then the inequality
∫ b

a

h(u)du ≥ 0 holds.

Moreover, equality holds iff (h(u) = 0 for any u ∈ [a, b]).
Remark. Geometric interpretation?
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9. Theorem (6). (Cauchy-Schwarz Inequality for definite integrals.)
Let a, b be real numbers, with a < b, and f, g : [a, b] −→ R be functions. Suppose neither
f nor g is constant zero on [a, b].
Suppose f, g are continuous on [a, b]. Then the statements below hold:

(a) The inequality
∣∣∣∣∣
∫ b

a

f (u)g(u)du

∣∣∣∣∣ ≤
[∫ b

a

(f (u))2du

]1
2
[∫ b

a

(g(u))2du

]1
2

holds.

(b) The statements (⋆1), (⋆2) are logically equivalent:

(⋆1)

∣∣∣∣∣
∫ b

a

f (u)g(u)du

∣∣∣∣∣ =
[∫ b

a

(f (u))2du

]1
2
[∫ b

a

(g(u))2du

]1
2

.

(⋆2) There exist some p, q ∈ R\{0} such that pf (u) + qg(u) = 0 for any u ∈ [a, b]. (The
functions f, g are ‘linearly dependent over R’.)

Remark. In the context of the statement of Theorem (6), if one of the functions f , g
is constant zero on [a, b], then the inequality in (a) trivially reduces to the equality in (⋆1)

of (b).
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10. Theorem (7). (Triangle Inequality for definite integrals.)
Let a, b be real numbers, with a < b, and f, g : [a, b] −→ R be functions. Suppose neither
f nor g is constant zero on [a, b].
Suppose f, g are continuous on [a, b]. Then the statements below hold:

(a) The inequality
[∫ b

a

(f (u) + g(u))2du

]1
2

≤

[∫ b

a

(f (u))2du

]1
2

+

[∫ b

a

(g(u))2du

]1
2

holds.

(b) The statements (∗1), (∗2) are logically equivalent:

(∗1)

[∫ b

a

(f (u) + g(u))2du

]1
2

=

[∫ b

a

(f (u))2du

]1
2

+

[∫ b

a

(g(u))2du

]1
2

.

(∗2) There exist some s > 0, t > 0 such that sf (u) = tg(u). (One of the functions f, g is
a non-negative scalar multiple of the other.)

Remark. In the context of the statement of Theorem (7), if one of the functions f , g
is constant zero on [a, b], then the inequality in (a) trivially reduces to the equality in (∗1)
of (b).

Theorem (7) can be deduced from Theorem (6) in the same way as Theorem (4) is deduced
from Theorem (3).
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11. Proof of Theorem (6).
Let a, b be real numbers, with a < b, and f, g : [a, b] −→ R be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function F : R −→ R by F (t) =

∫ b

a

(tf (u) + g(u))2du for any t ∈ R.
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Proof of Theorem (6).
Let a, b be real numbers, with a < b, and f, g : [a, b] −→ R be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function F : R −→ R by F (t) =

∫ b

a

(tf (u) + g(u))2du for any t ∈ R.

(b) i. [(⋆1) =⇒ (⋆2)?]

Suppose
∣∣∣∣∣
∫ b

a

f (u)g(u)du

∣∣∣∣∣ =
(∫ b

a

(f (u))2du

)1
2
(∫ b

a

(g(u))2du

)1
2

.
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Proof of Theorem (6).
Let a, b be real numbers, with a < b, and f, g : [a, b] −→ R be functions. Suppose neither
f nor g is identically zero on [a, b]. Suppose f, g are continuous on [a, b].

(a) Define the function F : R −→ R by F (t) =

∫ b

a

(tf (u) + g(u))2du for any t ∈ R.

(b) i. [(⋆1) =⇒ (⋆2)?]
ii. [(⋆2) =⇒ (⋆1)?]

Suppose there exist some p, q ∈ R\{0} such that for any x ∈ [a, b], the equality
pf (x) + qg(x) = 0 holds.
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12. Appendix 1. Cauchy-Schwarz Inequality and Triangle Inequality for ‘square-
summable infinite sequences of real numbers’.
With the help of the Bounded-Monotone Theorem and the notion of absolute convergence
for infinite series, we can ‘extend’ the Cauchy-Schwarz Inequality and Triangle Inequality
to analogous results for ‘square-summable infinite sequences in R’.

13. Appendix 2: Further generalizations.
(a) There are ‘complex analogues’ for the ‘real versions’ of Cauchy-Schwarz Inequalities (The-

orem (3), Theorem (6)) and Triangle Inequalities (Theorem (4), Theorem (7)) stated
here.

(b) The Cauchy-Schwarz Inequality for ‘real vectors’ can be seen as a special case of Hölder’s
Inequality for ‘real vectors’. The Triangle Inequality for ‘real vectors’ can be seen as a spe-
cial case of Minkowski’s Inequality for ‘real vectors’. You will encounter these inequalities
in advanced courses in mathematical analysis.
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