1. Definition. (Absolute value of a real number.)

Let r be a real number.

The absolute value of r, which is denoted by |r|, is the non-negative real number defined by

$$|r| = \left\{ \begin{array}{ll} r & \text{if} \quad r \ge 0 \\ -r & \text{if} \quad r < 0 \end{array} \right. .$$

Remarks.

- (a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.
- (b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

Lemma (1).

Let $r \in \mathbb{R}$. The statements below hold:

(a)
$$r > 0$$
 iff $|r| = r$.

(a)
$$r \ge 0$$
 iff $|r| = r$. (b) $r \le 0$ iff $|r| = -r$. (c) $r = 0$ iff $|r| = 0$. (d) $-|r| \le r \le |r|$.

(c)
$$r = 0$$
 iff $|r| = 0$.

(d)
$$-|r| \le r \le |r|$$
.

Proof. Exercise in word game on the definition and the word iff.

2. Lemma (2). (How to 'remove' the absolute value symbol through algebraic means?)

Let $r \in \mathbb{R}$. The statements below hold:

(a)
$$|r|^2 = r^2$$
.

(b)
$$|r| = \sqrt{r^2}$$
.

What is the relevance of this result? We give one example: whenever we obtain in a calculation the expression | 'blah-blah'|², we may replace it by the expression ('blah-blah')², which may be easier to handle.

Proof. Let $r \in \mathbb{R}$.

(a) We have $r \ge 0$ or r < 0.

(Case 1.) Suppose
$$r \ge 0$$
. Then $|r| = r$. Therefore $|r|^2 = r^2$.

(Case 2.) Suppose
$$r < 0$$
. Then $|r| = -r$. Therefore $|r|^2 = (-r)^2 = r^2$.

Hence, in any case, $|r|^2 = r^2$.

(b) We have verified that $|r|^2 = r^2$. Since $|r| \ge 0$, we have $|r| = \sqrt{|r|^2} = \sqrt{r^2}$.

3. Lemma (3). (Absolute value and products.)

Let $s, t \in \mathbb{R}$. The equality |st| = |s||t| holds.

Proof. Let
$$s, t \in \mathbb{R}$$
. We have $|st|^2 = (st)^2 = s^2t^2 = |s|^2|t|^2 = (|s||t|)^2$. Then $|st| = |s||t|$. (Why?)

4. Lemma (4). (Basic inequalities concerned with absolute value.)

Let $r, c \in \mathbb{R}$. Suppose $c \geq 0$. Then the statements below hold:

(a)
$$|r| \le c$$
 iff $-c \le r \le c$.

(c)
$$|r| \ge c$$
 iff $(r \le -c \text{ or } r \ge c)$.

(b)
$$|r| < c \text{ iff } -c < r < c.$$

(d)
$$|r| > c$$
 iff $(r < -c \text{ or } r > c)$.

Proof. Exercise.

5. Definition. (Absolute value function.)

The function from \mathbb{R} to \mathbb{R} defined by assigning each real number to its absolute value is called the **absolute value** function.

Remark.

In symbols we may denote this function by $|\cdot|$, and express its 'formula of definition' as ' $x \mapsto |x|$ for each $x \in \mathbb{R}$ ', or equivalently as

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

We may also express the 'formula of definition' of the function $|\cdot|$ as ' $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$ '.

6. Theorem (5). (Triangle Inequality on the real line.)

Suppose u, v are real numbers. Then $|u+v| \leq |u| + |v|$. Equality holds iff $uv \geq 0$.

Proof.

Suppose u, v are real numbers.

Then
$$(|u|+|v|)^2 - |u+v|^2 = (|u|+|v|)^2 - (u+v)^2 = (|u|^2 + |v|^2 + 2|u||v|) - (u^2 + v^2 + 2uv) = 2(|uv| - uv)$$
. (Why?)

(a) We have $uv \le |uv|$. Then $(|u| + |v|)^2 - |u + v|^2 \ge 0$.

Therefore $|u + v|^2 \le (|u| + |v|)^2$.

Since $|u+v| \ge 0$ and $|u|+|v| \ge 0$, we have $|u+v| \le |u|+|v|$.

- (b) i. Suppose $uv \ge 0$. Then |uv| = uv. Therefore $(|u| + |v|)^2 |u + v|^2 = 0$. Hence |u + v| = |u| + |v|.
 - ii. Suppose |u+v| = |u| + |v|. Then $(|u| + |v|)^2 |u+v|^2 = 0$. Therefore |uv| = uv. Hence $uv \ge 0$.

Remark.

An alternative argument for this result starts in this way:

Suppose u, v are real numbers. Then u, v are both non-negative, or u, v are both non-positive, or (one of u, v is non-negative and the other is non-positive).

Now argue 'case by case'.

7. Theorem (6). (Triangle Inequality on the real line, also.)

Suppose s, t are real numbers. Then $|s| - |t| \le |s - t|$. Equality holds iff $st \ge 0$.

Proof. Exercise. (Imitate what the argument for Theorem (5). Play with the expression $(s-t)^2 - (|s|-|t|)^2$.)

Remark. We can also directly apply Theorem (5) to obtain the 'inequality' conclusion in Theorem (6).

8. Theorem (7). (Generalization of Theorem (5) to the 'many number' situation.)

Let n be an integer greater than 1. Suppose u_1, u_2, \dots, u_n are real numbers.

Then
$$|u_1 + u_2 + \cdots + u_n| \le |u_1| + |u_2| + \cdots + |u_n|$$
.

Equality holds iff u_1, u_2, \dots, u_n are all non-negative or all non-positive.

Proof. Exercise in mathematical induction.

9. Appendix: Triangle Inequality on the plane.

Theorem (5) can be regarded as a special case of Theorem (8). (There are 'higher-dimensional analogues' of this result.)

Theorem (8). (Triangle Inequality on the plane.)

Suppose u, v, s, t are real numbers. Then $\sqrt{(u+s)^2 + (v+t)^2} \le \sqrt{u^2 + v^2} + \sqrt{s^2 + t^2}$. Equality holds iff $(ut = vs \text{ and } us \ge 0 \text{ and } vt \ge 0)$.

Proof. Postponed.

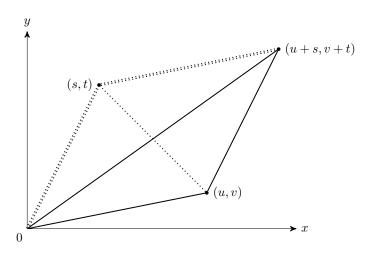
Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

Consider the parallelogram whose vertices are (0,0), (u,v), (s,t), (u+s,v+t).

The line segment joining (0,0), (u,v) has length $\sqrt{u^2+v^2}$. The line segment joining (u,v), (u+s,v+t), which is the same as the distance between (0,0), (s,t), has length $\sqrt{s^2+t^2}$. The line segment joining (0,0), (u+s,v+t) is of length $\sqrt{(u+s)^2+(v+t)^2}$.

The sum of the first two lengths is expected to be no shorter than the last. But this is expected: the three line segments are the three sides of the triangle with vertices (0,0), (u,v), (u+s,v+t).

Equality holds exactly when the three points (u, v), (s, t), (u + s, v + t) are on the same 'half-line' with endpoint at the origin (0, 0).



10. Digression: Proofs of statements with conclusion '... iff ...'.

Re-examine our work on, say, Theorem (5), in this handout. Part of the conclusion in the statement of Theorem (5) reads:

$$|u + v| = |u| + |v| \text{ iff } uv \ge 0.$$

This is a short-hand for the passage below:

Both statements (\dagger) , (\ddagger) hold:

- (†) Suppose |u+v| = |u| + |v|. Then $uv \ge 0$.
- (‡) Suppose $uv \ge 0$. Then |u+v| = |u| + |v|.

For this reason, the argument for this part of Theorem (5) is made up of two 'logically independent' passages, one a justification for (†), and the other a justification for (‡).

This is what we indeed give in the argument for Theorem (5).