
1. Definition. (Absolute value of a real number.)
Let r be a real number.
The absolute value of r, which is denoted by |r|, is the non-negative real number
defined by

|r| =

{
r if r ≥ 0

− r if r < 0
.

Remarks.
(a) In a less formal manner we may refer to |r| is the magnitude of the real number r.
(b) This is the geometric interpretation of the definition: |r| is the distance between the

point identified as 0 and the point identified as r on the real line.
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Definition. (Absolute value of a real number.)
Let r be a real number.
The absolute value of r, which is denoted by |r|, is the non-negative real number
defined by

|r| =

{
r if r ≥ 0

− r if r < 0
.

Remarks.
(a) In a less formal manner we may refer to |r| is the magnitude of the real number r.
(b) This is the geometric interpretation of the definition: |r| is the distance between the

point identified as 0 and the point identified as r on the real line.
Lemma (1).
Let r ∈ R. The statements below hold:

(a) r ≥ 0 iff |r| = r.
(b) r ≤ 0 iff |r| = −r.

(c) r = 0 iff |r| = 0.
(d) −|r| ≤ r ≤ |r|.

Proof. Exercise in word game on the definition and the word iff.
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2. Lemma (2). (How to ‘remove’ the absolute value symbol through alge-
braic means?)
Let r ∈ R. The statements below hold:

(a) |r|2 = r2. (b) |r| =
√
r2.
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2. Lemma (2). (How to ‘remove’ the absolute value symbol through alge-
braic means?)
Let r ∈ R. The statements below hold:

(a) |r|2 = r2. (b) |r| =
√
r2.

Proof.
Let r ∈ R.

(a) We have r ≥ 0 or r < 0.
(Case 1.) Suppose r ≥ 0. Then |r| = r. Therefore |r|2 = r2.
(Case 2.) Suppose r < 0. Then |r| = −r. Therefore |r|2 = (−r)2 = r2.

Hence, in any case, |r|2 = r2.
(b) We have verified that |r|2 = r2. Since |r| ≥ 0, we have |r| =

√
|r|2 =

√
r2.

3. Lemma (3). (Absolute value and products.)
Let s, t ∈ R. The equality |st| = |s||t| holds.
Proof.
Let s, t ∈ R. We have |st|2 = (st)2 = s2t2 = |s|2|t|2 = (|s||t|)2. Then |st| = |s||t|.
(Why?)
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4. Lemma (4). (Basic inequalities concerned with absolute value.)
Let r, c ∈ R. Suppose c ≥ 0. Then the statements below hold:

(a) |r| ≤ c iff −c ≤ r ≤ c.
(b) |r| < c iff −c < r < c.
(c) |r| ≥ c iff (r ≤ −c or r ≥ c).
(d) |r| > c iff (r < −c or r > c).
Proof. Exercise.
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5. Definition. (Absolute value function.)
The function from R to R defined by assigning each real number to its absolute value
is called the absolute value function.
Remark.
In symbols we may denote this function by | · |, and express its ‘formula of definition’
as ‘x 7−→ |x| for each x ∈ R’, or equivalently as

|x| =

{
x if x ≥ 0

− x if x < 0

We may also express the ‘formula of definition’ of the function | · | as ‘|x| =
√
x2 for

any x ∈ R’.
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6. Theorem (5). (Triangle Inequality on the real line.)
Suppose u, v are real numbers. Then |u + v| ≤ |u| + |v|. Equality holds iff uv ≥ 0.
Proof.
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7. Theorem (6). (Triangle Inequality on the real line, also.)
Suppose s, t are real numbers.
Then

∣∣ |s| − |t|
∣∣ ≤ |s− t|. Equality holds iff st ≥ 0.

Proof. Exercise. (Imitate what the argument for Theorem (5). Play with the
expression (s− t)2 − (|s| − |t|)2.)

Remark. We can also directly apply Theorem (5) to obtain the ‘inequality’ conclu-
sion in Theorem (6).

8. Theorem (7). (Generalization of Theorem (5) to the ‘many number’
situation.)
Let n be an integer greater than 1. Suppose u1, u2, · · · , un are real numbers.
Then |u1 + u2 + · · · + un| ≤ |u1| + |u2| + · · · + |un|.
Equality holds iff u1, u2, · · · , un are all non-negative or all non-positive.

Proof. Exercise in mathematical induction.
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9. Appendix: Triangle Inequality on the plane.
Theorem (5) can be regarded as a special case of Theorem (7).

Theorem (8). (Triangle Inequality on the plane.)
Suppose u, v, s, t are real numbers.
Then

√
(u + s)2 + (v + t)2 ≤

√
u2 + v2 +

√
s2 + t2.

Equality holds iff (ut = vs and us ≥ 0 and vt ≥ 0).
Proof. Postponed.
Remark. This is the geometric interpretation of Theorem (8) on the coordinate
plane:

x

y

0

(u, v)

(s, t)

(u + s, v + t)
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10. Digression: Proofs of statements with conclusion ‘... iff ...’.
Re-examine our work on, say, Theorem (5), in this handout.

Part of the conclusion in the statement of Theorem (5) reads:
|u + v| = |u| + |v| iff uv ≥ 0.

This is a short-hand for the passage below:
Both statements (†), (‡) hold:
(†) Suppose |u + v| = |u| + |v|. Then uv ≥ 0.
(‡) Suppose uv ≥ 0. Then |u + v| = |u| + |v|.

For this reason, the argument for this part of Theorem (5) is made up of two ‘logically
independent’ passages, one a justification for (†), and the other a justification for (‡).

This is what we indeed give in the argument for Theorem (5).
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