1. Definition. (Absolute value of a real number.)

Let r be a real number.

The **absolute value** of r, which is denoted by |r|, is the non-negative real number defined by

$$|r| = \begin{cases} r & \text{if } r \ge 0\\ -r & \text{if } r < 0 \end{cases}$$

Remarks.

(a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.

(b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

Definition. (Absolute value of a real number.)

Let r be a real number.

The **absolute value** of r, which is denoted by |r|, is the non-negative real number defined by

$$|r| = \begin{cases} r & \text{if } r \ge 0\\ -r & \text{if } r < 0 \end{cases}$$

Remarks.

(a) In a less formal manner we may refer to |r| is the **magnitude** of the real number r.

(b) This is the geometric interpretation of the definition: |r| is the distance between the point identified as 0 and the point identified as r on the real line.

Lemma (1).

Let $r \in \mathbb{R}$. The statements below hold:

(a)	$r \ge 0$ iff $ r = r$.	(c)	$r = 0 \; iff \; r = 0.$
(b)	$r \leq 0$ iff $ r = -r$.	(d)	$- r \le r \le r .$

Proof. Exercise in word game on the definition and the word *iff*.

2. Lemma (2). (How to 'remove' the absolute value symbol through algebraic means?)

Let $r \in \mathbb{R}$. The statements below hold:

(a) $|r|^2 = r^2$. (b) $|r| = \sqrt{r^2}$. Remark. What is the relevance of Lemma (2)? Here is one example : (a) Whenever we obtain in a calculation blah-blah-blah 12, we may replace this expression by (blah-blah-blah')2. which may be easter to handle.

- 2. Lemma (2). (How to 'remove' the absolute value symbol through algebraic means?)
 - Let $r \in \mathbb{R}$. The statements below hold:

(a) $|r|^2 = r^2$. (b) $|r| = \sqrt{r^2}$.

Proof.

Let $r \in \mathbb{R}$.

(a) We have r ≥ 0 or r < 0.
(Case 1.) Suppose r ≥ 0. Then |r| = r. Therefore |r|² = r².
(Case 2.) Suppose r < 0. Then |r| = -r. Therefore |r|² = (-r)² = r². Hence, in any case, |r|² = r².
(b) We have verified that |r|² = r². Since |r| ≥ 0, we have |r| = √|r|² = √r².

3. Lemma (3). (Absolute value and products.) Let $s, t \in \mathbb{R}$. The equality |st| = |s||t| holds.

Proof.

Let $s, t \in \mathbb{R}$. We have $|st|^2 = (st)^2 = s^2t^2 = |s|^2|t|^2 = (|s||t|)^2$. Then |st| = |s||t|. (Why?)

4. Lemma (4). (Basic inequalities concerned with absolute value.) Let $r, c \in \mathbb{R}$. Suppose $c \geq 0$. Then the statements below hold: (a) $|r| \leq c$ iff $-c \leq r \leq c$. (b) |r| < c iff -c < r < c. (c) $|r| \ge c$ iff $(r \le -c \text{ or } r \ge c)$. (d) |r| > c iff (r < -c or r > c). Proof. Geometric interpretation? Below is that for @; how about others? Exercise. (a) The two descriptions in blue, red on r, c one the same "The distance between 0, r as points in the real line is at most c ' _ The position of r in the real line is within the points -c, c. real - C line Position of each such Doint is between Distance between D and each such point D at most c. -c and c

5. Definition. (Absolute value function.)

The function from \mathbb{R} to \mathbb{R} defined by assigning each real number to its absolute value is called the **absolute value function**.

Remark.

In symbols we may denote this function by $|\cdot|$, and express its 'formula of definition' as ' $x \mapsto |x|$ for each $x \in \mathbb{R}$ ', or equivalently as

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

We may also express the 'formula of definition' of the function $|\cdot|$ as ' $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$ '.

6. Theorem (5). (Triangle Inequality on the real line.) Suppose u, v are real numbers. Then $|u + v| \leq |u| + |v|$. Equality holds iff $uv \geq 0$. Proof. (a) (6) Suppose u, v one real numbers. (b)(i). Suppose uv≥0. Then Invi= uv (by depuition). Then $(|u|+|v|)^2 - |u+v|^2$ Therefore $(|u|+|v|)^2 - |u+v|^2 = 2(|uv|-uv) = 0$ $(|u|+|v|)^{2} - (u+v)^{2}$ $\left[Lemma(z) \right] = \left(|u|^{2} + |v|^{2} + 2|u||v| \right)$ Hence 14+11 = 141+111. (why?) $[applied.] - (u^2 + v^2 + 2 uv)$ (ii) Suppose 14+1/= 14/+1/. 2 (Iul IVI - uV) Then $O = (1u1 + |v|)^2 - |u+v|^2 = 2(1uv - uv)$ upplied) (uv - uv) (a) We have us ≤ |uv]. Therefore InvI= uv Then $(|u|+|v|)^2 \ge |u+v|^2$. (why?)Hence $uv \ge o(by Lemma(1))$. Since 11+11=0 and 11+111=0, we have 14+VI = 141+1V1.

7. Theorem (6). (Triangle Inequality on the real line, also.)

Suppose s, t are real numbers. Then $||s| - |t|| \le |s - t|$. Equality holds iff $st \ge 0$.

Proof. Exercise. (Imitate what the argument for Theorem (5). Play with the expression $(s-t)^2 - (|s| - |t|)^2$.)

Remark. We can also directly apply Theorem (5) to obtain the 'inequality' conclusion in Theorem (6).

8. Theorem (7). (Generalization of Theorem (5) to the 'many number' situation.)

Let n be an integer greater than 1. Suppose u_1, u_2, \dots, u_n are real numbers. Then $|u_1 + u_2 + \dots + u_n| \le |u_1| + |u_2| + \dots + |u_n|$. Equality holds iff u_1, u_2, \dots, u_n are all non-negative or all non-positive.

Proof. Exercise in mathematical induction.

9. Appendix: Triangle Inequality on the plane.

Theorem (5) can be regarded as a special case of Theorem (7).

Theorem (8). (Triangle Inequality on the plane.)

Suppose u, v, s, t are real numbers.

Then $\sqrt{(u+s)^2 + (v+t)^2} \le \sqrt{u^2 + v^2} + \sqrt{s^2 + t^2}.$

Equality holds iff (ut = vs and $us \ge 0$ and $vt \ge 0$).

Proof. Postponed.

Remark. This is the geometric interpretation of Theorem (8) on the coordinate plane:

10. Digression: Proofs of statements with conclusion '... iff ...' Re-examine our work on, say, Theorem (5), in this handout.

Part of the conclusion in the statement of Theorem (5) reads:

|u+v| = |u| + |v| iff $uv \ge 0$.

This is a short-hand for the passage below:

Both statements $(\dagger), (\ddagger)$ hold: (\dagger) Suppose |u + v| = |u| + |v|. Then $uv \ge 0$. (\ddagger) Suppose $uv \ge 0$. Then |u + v| = |u| + |v|.

For this reason, the argument for this part of Theorem (5) is made up of two 'logically independent' passages, one a justification for (\dagger) , and the other a justification for (\ddagger) .

This is what we indeed give in the argument for Theorem (5).