- 1. Let c be a real number, and f(x) be the polynomial (3x + 2)(2x 3) (3c + 2)(2c 3). Find the roots of f(x).
- 2. Let c be a real number. Let f(x) be the polynomial $2x^2 + (c+2)x - 2(c+3)$, and α, β be the roots of f(x). Suppose $\alpha + \beta = \alpha\beta$. Find the value of c.
- 3. Let f(x) be the polynomial $x^2 + 5x 4$, and α, β be the roots of f(x).

Without determining the values of α, β explicitly, find the values of the expressions below:

(a) $\alpha^2 + \beta^2$ (c) $\alpha^3 + \beta^3$ (e) $\sqrt{(\alpha - \beta)^2}$ (g) $2^{\alpha} \cdot 2^{\beta}$

(b)
$$\alpha^4 + \beta^4$$
 (d) $\beta^{-1}(2-\alpha) + \alpha^{-1}(2-\beta)$ (f) $\sqrt{(\alpha^2 - \beta^2)^2}$ (h) $\log_4(\alpha^2) + \log_4(\beta^2)$

- 4. Let a, b, c be numbers, with $a \neq 0$, and f(x) be the quadratic polynomial given by $f(x) = ax^2 + bx + c$. Suppose that α, β are the roots of f(x).
 - (a) i. Find the quadratic polynomial with leading coefficient a whose roots are 3α 1 and 3β 1.
 ii. Find the quadratic polynomial with leading coefficient a² whose roots are α² and β².
 iii. Find the quadratic polynomial with leading coefficient a² whose roots are α + 3β and β + 3α.
 - III. Find the quadratic polynomial with leading coefficient a^2 whose roots are $\alpha + 5\beta$ and $\beta + 5\alpha$.
 - (b) Now further suppose $c \neq 0$.
 - i. Find the quadratic polynomial with leading coefficient ac whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
 - ii. Find the quadratic polynomial with leading coefficient ac whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$.

iii. Find the quadratic polynomial with leading coefficient a^2c^2 whose roots are $\alpha^2 + \frac{1}{\beta^2}$ and $\beta^2 + \frac{1}{\alpha^2}$.

5. Let a, b be real numbers.

Let f(x), g(x) be the quadratic polynomials given by $f(x) = -x^2 + ax + 1$, $g(x) = x^2 + bx + a$ respectively. Suppose α, β are the roots of f(x) and $2\alpha, 2\beta$ are the roots of g(x). Determine the values of a, b respectively.

- 6. Let a, b, c, p, q, r be numbers, with a ≠ 0 and p ≠ 0.
 Let f(x), g(x) be the quadratic polynomials given by f(x) = ax² + bx + c, g(x) = px² + qx + r respectively.
 Suppose α, β are the roots of f(x), and α ≠ 0, β ≠ 0. Further suppose ¹/_α, ¹/_β are the roots of g(x).
 Prove that ap = cr and aq = br.
- 7. Let p, q, r be numbers. Suppose $p + q 2r \neq 0$. Let f(x) be the quadratic polynomial given by $f(x) = (p + q - 2r)x^2 + (q + r - 2p)x + (r + p - 2q)$.
 - (a) Verify that 1 is a root of f(x).
 - (b) Prove that f(x) has a repeated root iff q = r.
- 8. Let k be a number, and f(x) be the quadratic polynomial given by $f(x) = x^2 2x + k$. Suppose α, β are the roots of f(x).
 - (a) Find the quadratic polynomial g(x) with leading coefficient 1 whose roots are α^3, β^3 .
 - (b) Also prove that the discriminant Δ_g of g(x) is given by $\Delta_g = A(B-k)(C-k)^2$. Here A, B, C are integers, whose values you have to determine explicitly.
 - (c) Suppose k is a real number. Further suppose α, β are not real numbers, but α^3, β^3 are real numbers. Find all possible values of k. Justify your answer.

9. Let a, b be real numbers. Suppose a > b and $a + b \neq 0$.

Let f(x) be the quadratic polynomial given by $f(x) = (a-b)x^2 - 2(a^2+b^2)x + (a^3-b^3)$.

- (a) Prove that the roots of f(x) are real and distinct iff ab > 0.
- (b) Suppose α, β are distinct real roots of f(x), and $\alpha > \beta$.

Prove that
$$\alpha - \beta = \frac{2(a+b)\sqrt{ab}}{a-b}$$
.

10. Let a, b be real numbers. Suppose a > b > 0.

Let f(x) be the quadratic polynomial given by $f(x) = 2x^2 - (3a + b)x + ab$.

Prove that f(x) has two distinct real roots, one of them greater than b and the other less than b.

- 11. Let p be a real number. Let f(x) be the quadratic polynomial given by $f(x) = x^2 + (p+1)x + (p-1)x$. Suppose α, β are the roots of f(x).
 - (a) Prove that α, β are real and distinct.
 - (b) Express $(\alpha 2)(\beta 2)$ in terms of p.
 - (c) Suppose $\beta < 2 < \alpha$.
 - i. Prove that $p < -\frac{5}{3}$.

ii. Further suppose $(\alpha - \beta)^2 < 20$. Prove that -3

- 12. Let c be a real number. Let f(x) be the polynomial given by $f(x) = (c-4)x^2 + (2c-1)x + (4c-1)$. Suppose α, β are the roots of f(x), and $\alpha < 0 < \beta$.
 - (a) By considering the product $\alpha\beta$, or otherwise, prove that $\frac{1}{4} < c < 4$.
 - (b) Further suppose $\alpha + \beta < 0$. Prove that $\frac{1}{4} < c < \frac{1}{2}$.

13. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{x^2 - 2x + 3}{x^2 + 2x + 3}$ for any $x \in \mathbb{R}$.

(a) Let $\alpha \in \mathbb{R}$. Prove that $2 - \sqrt{3} \le f(\alpha) \le 2 + \sqrt{3}$.

Remark. There is no need to use calculus. Write $\beta = f(\alpha)$ and re-express the equality $f(\alpha) = \frac{\alpha^2 - 2\alpha + 3}{\alpha^2 + 2\alpha + 3}$ in the form $A\alpha^2 + B\alpha + C = 0$. Then ask what you have learnt about quadratic equations will tell you.

- (b) Prove that f attains absolute minimum value $2 \sqrt{3}$ and attains absolute maximum value $2 + \sqrt{3}$.
- 14. Let $f : \mathbb{R} \setminus \{-1\} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{x^2 + x + 1}{x + 1}$ for any $x \in \mathbb{R} \setminus \{-1\}$.
 - (a) Let $\alpha \in \mathbb{R} \setminus \{-1\}$. Prove that $f(\alpha) \leq -3$ or $f(\alpha) \geq 1$.

Remark. There is no need to use calculus. Write $\beta = f(\alpha)$ and re-express the equality $\beta = \frac{\alpha^2 + \alpha + 1}{\alpha + 1}$ in the form $A\alpha^2 + B\alpha + C = 0$. Then ask what you have learnt about quadratic equations will tell you.

(b) Does f attain the values -3, 1? Justify your answer.

15. Let $f : \mathbb{R} \setminus \{2,4\} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{(x-1)(x-5)}{(x-2)(x-4)}$ for any $x \in \mathbb{R} \setminus \{2,4\}$.

(a) Let $\alpha \in \mathbb{R} \setminus \{2, 4\}$. Prove that $f(\alpha) \leq 1$ or $f(\alpha) \geq 4$.

Remark. There is no need to use calculus. Write $\beta = f(\alpha)$ and re-express the equality $\beta = \frac{(\alpha - 1)(\alpha - 5)}{(\alpha - 2)(\alpha - 4)}$ in the form $A\alpha^2 + B\alpha + C = 0$. Then ask what you have learnt about quadratic equations will tell you.

- (b) Does f attain the value 1? Justify your answer.
- (c) Does f attain the value 4? Justify your answer.