
MATH1050 Arithmetic progression and geometric progression

1. Definition. (Arithmetic progression.)

Let {an}∞n=0 be an infinite sequence in C. The infinite sequence {an}∞n=0 is said to be an arithmetic progression
if the statement (AP) holds:

(AP) There exists some d ∈ C such that for any n ∈ N, an+1 − an = d.

The number d is called the common difference of the arithmetic progression {an}∞n=0.

Remark. The use of the article ‘the’ should be justified with a ‘uniqueness’ result, which is Lemma (1).

Remark on ‘terminating arithmetic progressions’. Let N ∈ N\{0, 1}. Suppose c0, c1, · · · , cN are N + 1

complex numbers. We abuse notation in saying that c0, c1, · · · , cN form an arithmetic progression with common
difference d exactly when there exists some arithmetic progression {an}∞n=0 with common difference d such that
ak = ck for any integer k amongst 0, 1, 2, · · · , N . (In plain language, c0, c1, · · · , cN are identified as the 0-th term,
1-st term, ... , N -th term of the arithmetic progression {an}∞n=0.)

2. Lemma (1).

Let {an}∞n=0 be an arithmetic progression, and d, d′ be complex numbers. Suppose d, d′ are common differences of
the arithmetic progression {an}∞n=0. Then d = d′.
Remark. This is how we formulate the statement ‘each arithmetic progression has at most one common difference’.
Proof of Lemma (1).

Let {an}∞n=0 be an arithmetic progression, and d, d′ be complex numbers. Suppose d, d′ are common differences of
the arithmetic progression {an}∞n=0.
By definition, we have a1 − a0 = d.
Also, by definition, we have a1 − a0 = d′.
Then d = d′.

3. Lemma (2).

Let {an}∞n=0 be an infinite sequence in C. Suppose {an}∞n=0 is an arithmetic progression, with common difference d.

Then am+k = am + kd for any m, k ∈ N. (In particular an = a0 + nd for any n ∈ N.)

Proof of Lemma (2). Let {an}∞n=0 be an infinite sequence in C. Suppose {an}∞n=0 is an arithmetic progression,
with common difference d.
Pick any m, k ∈ N. By definition, these k equalities hold:

am+k − am+k−1 = d

am+k−1 − am+k−2 = d
...

am+1 − am = d

Then am+k − am =

k∑
j=1

(am+j − am+j−1) =

k∑
j=1

d = kd.

Therefore am+k = am + kd.

4. Lemma (3). (‘Converse’ of Lemma (2).)

Let {an}∞n=0 be an infinite sequence in C. Suppose am+k = am + kd for any m, k ∈ N.

Then {an}∞n=0 is an arithmetic progression, with common difference d.

Proof of Lemma (3).

Let {an}∞n=0 be an infinite sequence in C. Suppose am+k = am + kd for any m, k ∈ N.
Then, in particular, ak = a0 + kd for any k ∈ N.
Pick any n ∈ N. We have an+1 − an = [a0 + (n+ 1)d]− (a0 + nd) = d.
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It follows that {an}∞n=0 is an arithmetic progression, with common difference d.

Reminder on terminology in logic. Compare the respective statements of Lemma (2) and Lemma (3).
The latter is called the converse of the former because the respective positions of

• ‘{an}∞n=0 is an arithmetic progression, with common difference d’,
• ‘am+k = am + kd for any m, k ∈ N’

have been interchanged.

5. Lemma (4).
Let {an}∞n=0 be an infinite sequence in C. Suppose {an}∞n=0 is an arithmetic progression.

Then for any k ∈ N, ak+1 =
ak + ak+2

2
.

Proof of Lemma (4). Let {an}∞n=0 be an infinite sequence in C. Suppose {an}∞n=0 is an arithmetic progression.
Pick any k ∈ N. By definition, ak+1 − ak = ak+2 − ak+1.

Then ak+1 =
ak + ak+2

2
.

6. Lemma (5). (‘Converse’ of Lemma (4))

Let {an}∞n=0 be an infinite sequence in C. Suppose for any k ∈ N, ak+1 =
ak + ak+2

2
.

Then {an}∞n=0 is an arithmetic progression.

Proof of Lemma (5). Let {an}∞n=0 be an infinite sequence in C. Suppose for any k ∈ N, ak+1 =
ak + ak+2

2
.

Define d = a1 − a0.
Pick any m ∈ N. (If m = 1 then by definition, am+1−am = d.) Suppose m ≥ 1. Then by assumption, these equalities
hold: 

am+1 − am = am − am−1

am − am−1 = am−1 − am−2

...
a3 − a2 = a2 − a1

a2 − a1 = a1 − a0

Therefore am+1 − am = a1 − a0 = d.
Hence by definition, {an}∞n=0 is an arithmetic progression.

7. We can summarize what we have learnt in Lemma (2), Lemma (3), Lemma (4), Lemma (5) into the result below.
Theorem (6). (Equivalent formulations of the definition of arithmetic progression.)
Let {an}∞n=0 be an infinite sequence in C. The statements below are logically equivalent:

(a) {an}∞n=0 is an arithmetic progression, with common difference d.
(b) For any m, k ∈ N, am+k = am + kd.

(c) For any k ∈ N, ak+1 =
ak + ak+2

2
.

8. Lemma (7).

Suppose n ∈ N. Then the equality 0 + 1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
holds.

Proof of Lemma (7). Suppose n ∈ N. Write Sn = 0 + 1 + 2 + 3 + · · ·+ (n− 1) + n.
By definition, Sn = n+ (n− 1) + (n− 2) + (n− 3) + · · ·+ 1 + 0 also.
Then

2Sn = Sn + Sn = [0 + 1 + 2 + 3 + · · ·+ (n− 1) + n] + [n+ (n− 1) + (n− 2) + (n− 3) + · · ·+ 1 + 0]

= (0 + n) + [1 + (n− 1)] + [2 + (n− 2)] + · · ·+ [(n− 1) + 1] + (n+ 0)

= n+ n+ n+ · · ·+ n+ n︸ ︷︷ ︸
n+ 1 times

= (n+ 1)n.
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Therefore Sn =
n(n+ 1)

2
.

9. Theorem (8). (Formula for the sum of finitely many consecutive terms in an arithmetic progression.)

Suppose {an}∞n=0 is an arithmetic progression with common difference d.

Then, for any m, k ∈ N, am + am+1 + am+2 + · · ·+ am+k = (k + 1)am +
k(k + 1)

2
d.

Proof of Theorem (8). Suppose {an}∞n=0 is an arithmetic progression with common difference d.

Pick any m, k ∈ N. By Theorem (6), we have am+j = am + jd for each j = 0, 1, 2, · · · , k.

Then

am + am+1 + am+2 + · · ·+ am+k = am + (am + d) + (am + 2d) + · · ·+ (am + kd)

= (k + 1)am + (0 + 1 + 2 + · · ·+ k)d

= (k + 1)am +
k(k + 1)

2
d.

10. Definition. (Geometric progression.)

Let {bn}∞n=0 be an infinite sequence in C\{0}. The infinite sequence {bn}∞n=0 is said to be a geometric progression
if the statement (GP) holds:

(GP) There exists some r ∈ C\{0} such that for any n ∈ N, bn+1

bn
= r.

The number r is called the common ratio of this geometric progression.
Remark. The use of the article ‘the’ should be justified with a ‘uniqueness’ result, which is Lemma (9).

Remark on ‘terminating geometric progression’. Let N ∈ N\{0, 1}. Suppose c0, c1, · · · , cN are N + 1 non-
zero complex numbers. We abuse notation in saying that c0, c1, · · · , cN form a geometric progression with common
ratio r exactly when there exists some geometric progression {bn}∞n=0 with common ratio r such that bk = ck for any
integer k amongst 0, 1, 2, · · · , N . (In plain language, c0, c1, · · · , cN are identified as the 0-th term, 1-st term, ... , N -th
term of the geometric progression {bn}∞n=0.)

11. Lemma (9).

Let {bn}∞n=0 be a geometric progression, and r, r′ be complex numbers. Suppose r, r′ are common ratios of the
geometric progression {bn}∞n=0. Then r = r′.

Proof of Lemma (9). Exercise. (Imitate the argument for Lemma (1).)

12. Imitating the reasoning in Lemma (2), Lemma (3), Lemma (4), Lemma (5), we obtain the result below.

Theorem (10). (Equivalent formulations of the definition of geometric progression.)

Let {bn}∞n=0 be an infinite sequence in C\{0}. The statements below are logically equivalent:

(a) {bn}∞n=0 is a geometric progression with common ratio r.

(b) For any m, k ∈ N, bm+k = b0r
k.

(c) For any k ∈ N, b2k+1 = bkbk+2.

13. Lemma (11).
Suppose n ∈ N and r ∈ C. Then the statements below hold:

(a) 1− rn+1 = (1− r)(1 + r + r2 + · · ·+ rn).

(b) Further suppose r ̸= 1. Then 1− rn+1

1− r
= 1 + r + r2 + · · ·+ rn.

Proof of Lemma (11). Suppose n ∈ N and r ∈ C. Write Tn,r = 1 + r + r2 + · · ·+ rn−1 + rn.

(a) We have rTn,r = r + r2 + · · ·+ rn−1 + rn + rn+1.
Then (1− r)Tn,r = Tn,r − rTn,r = (1 + r+ r2 + · · ·+ rn−1 + rn)− (r+ r2 + · · ·+ rn−1 + rn + rn+1) = 1− rn+1.
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(b) Further suppose r ̸= 1. Then 1− r ̸= 0. Therefore 1− rn+1

1− r
=

(1− r)Tn,r

1− r
= Tn,r = 1 + r + r2 + · · ·+ rn.

14. Theorem (12).
Suppose n ∈ N, and s, t ∈ C.

Then the equality sn+1 − tn+1 = (s− t)(sn + sn−1t+ sn−2t2 + · · ·+ sn−ktk + · · ·+ stn−1 + tn) holds.

Proof of Theorem (12). Exercise.
Remark. When we want to ‘factorizing’ the expression sn − tn or sn + tn with the help of integers only, we have
these equalities below for ‘small values’ of n:

s2 − t2 = (s− t)(s+ t),
s3 − t3 = (s− t)(s2 + st+ t2), s3 + t3 = (s+ t)(s2 − st+ t2),
s4 − t4 = (s− t)(s+ t)(s2 + t2),
s5 − t5 = (s− t)(s4 + s3t+ s2t2 + st3 + t4), s5 + t5 = (s+ t)(s4 − s3t+ s2t2 − st3 + t4),
s6 − t6 = (s− t)(s+ t)(s2 + st+ t2)(s2 − st+ t2), s6 + t6 = (s2 + t2)(s4 − s2t2 + t2),

Of course, when we resort to roots of unity, we may ‘completely factorize’ sn− tn into a product of ‘linear expressions’
with the help of complex numbers. Or we may ‘factorize’ sn − tn into a product of ‘linear expressions’ and ‘quadratic
expressions’ with the help of real numbers only. (We need De Moivre’s Theorem and results about roots of unity
here.)

15. Theorem (13). (Formula for the sum of finitely many consecutive terms in a geometric progression.)

Suppose {bn}∞n=0 is a geometric progression with common ratio r. Then for each m,n ∈ N,

bm + bm+1 + bm+2 + · · ·+ bm+n =


(n+ 1)bm if r = 1

bm(rn+1 − 1)

r − 1
if r ̸= 1

Proof of Theorem (13). Exercise. (Apply Lemma (10).)

16. Theorem (14). (Limiting value for a sum of geometric progression.)

Let {bn}∞n=0 be a geometric progression of non-zero real numbers, with common ratio r. Suppose |r| < 1.

Then lim
n→∞

(b0 + b1 + b2 + · · ·+ bn) =
b0

1− r
.

Remark on the proof of Theorem (14). Apply Theorem (13), and standard techniques in calculus such as the
Sandwich Rule.
Further remark. In school mathematics, you were concerned with the situation in which r was real (as stated
here). But this result can be extended to the situation in which r is a general complex number with modulus less
than 1.
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