1. (a) Solution.

- i. Let A, B, C be sets, and $f : A \longrightarrow B$, $g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Pick any $z \in C$. Since $g \circ f$ is surjective, there exists some $x \in A$ such that $z = (g \circ f)(x)$. Define y = f(x). We have $y \in B$. For the same $x \in A$, $y \in B$ and $z \in C$, we have $g(y) = g(f(x)) = (g \circ f)(x) = z$. It follows that g is surjective.
- ii. Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Pick any $x, w \in A$. Suppose f(x) = f(w). Then g(f(x)) = g(f(w)). Note that $(g \circ f)(x) = g(f(x))$ and $(g \circ f)(w) = g(f(w))$. Then $(g \circ f)(x) = (g \circ f)(w)$. Since $g \circ f$ is injective, we have x = w. It follows that f is injective.

```
(b) —
```

2. Solution.

(a) Take A = {0}, B = {1,2}, C = {3}. Here 0, 1, 2, 3 are pairwise distinct objects. Define the function f : A → B by f(0) = 1. Define the function g : B → C by g(1) = g(2) = 3. The function g ∘ f : A → C is given by (g ∘ f)(0) = g(f(0)) = g(1) = 3. Pick any z ∈ C. Since C = {3}, we have z = 3. Note that 0 ∈ A and (g ∘ f)(0) = 3 = z. It follows that g ∘ f is surjective. Note that 2 ∈ B. Pick any x ∈ A. Since A = {0}, we have x = 0. Then f(x) = f(0) = 1 ≠ 2. Therefore the function f is not surjective.
(b) Take A = {0}, B = {1,2}, C = {3}. Here 0, 1, 2, 3 are pairwise distinct objects. Define the function

(b) Take $A = \{0\}, B = \{1, 2\}, C = \{3\}$. Here 0, 1, 2, 3 are pairwise distinct objects. Define the function $f: A \longrightarrow B$ by f(0) = 1. Define the function $g: B \longrightarrow C$ by g(1) = g(2) = 3.

The function $g \circ f : A \longrightarrow C$ is given by $(g \circ f)(0) = g(f(0)) = g(1) = 3$.

Pick any $x, w \in A$. Suppose $(g \circ f)(x) = (g \circ f)(w)$. Since $A = \{0\}$, we have x = 0 = w. It follows that $g \circ f$ is injective.

Note that $1, 2 \in B$, $1 \neq 2$ and g(1) = g(2) = 3. Then the function g is not injective.

3. Answer.

- (a) True.
- (b) False.

4. Answer.

The statement (\sharp) is true.

5. Solution.

(a) The statement (\sharp) is true. We give a proof:

Let A, B be sets, and $f : A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $U \subset V$. Pick any object x. Suppose $x \in f^{-1}(U)$. By the definition of pre-image sets, there exists some $y \in U$ such that y = f(x). Since $y \in U$ and $U \subset V$, we have $y \in V$. Since $y \in V$ and y = f(x), we have $x \in f^{-1}(V)$ according to the definition of pre-image sets. It follows that $f^{-1}(U) \subset f^{-1}(V)$. $\ Acceptable \ answer.$

- Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $U \subset V$. Pick any object x. Suppose $x \in f^{-1}(U)$. By the definition of pre-image sets, $f(x) \in U$. Since $f(x) \in U$ and $U \subset V$, we have $f(x) \in V$. Since $f(x) \in V$, we have $x \in f^{-1}(V)$ according to the definition of pre-image sets. It follows that $f^{-1}(U) \subset f^{-1}(V)$.
- (b) The statement (b) is false. We give a dis-proof by counter-example.

Take $A = \{0, 1\}, B = \{0, 1\}$. Here 0, 1 are distinct objects. Define the function $f : A \longrightarrow B$ by f(0) = f(1) = 0. Take $U = \{0, 1\}, V = \{0\}$. We have $f^{-1}(U) = f^{-1}(V) = \{0, 1\}$. Then $f^{-1}(U) \subset f^{-1}(V)$. Note that $1 \in U$ and $1 \notin V$. Then $U \notin V$.

6. Answer.

- (a) The statement (\sharp) is true.
- (b) The statement (b) is false.