MATH1050 Proof-writing Exercise 9

Advice.

- All the questions are concerned with proofs and dis-proofs on abstract and theoretical statements about functions. Study the Handouts Surjectivity and Injectivity, Compositions, Surjectivity and Injectivity, Image sets and preimage sets, Theoretical results involving image sets and pre-image sets, Characterization of surjectivity with image sets, pre-image sets.
- Besides the handouts mentioned above, Questions (5), (8), of Assignment 9 and Question (9) of Assignment 10 may also be relevant.
- 1. (a) Prove each of the statements below:
 - i. Let A, B, C be sets, and $f : A \longrightarrow B$, $g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Then g is surjective.
 - ii. Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Then f is injective.
 - (b) Let I, J, K be sets, and $\alpha : I \longrightarrow J, \beta : J \longrightarrow K, \gamma : K \longrightarrow I$ be functions. Suppose $\gamma \circ \beta \circ \alpha, \alpha \circ \gamma \circ \beta$ are both injective. Further suppose $\beta \circ \alpha \circ \gamma$ is surjective. Prove that each of the functions α, β, γ is both surjective and injective.
- 2. Dis-prove each of the statements below by giving an appropriate argument.
 - (a) Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Then f is surjective.
 - (b) Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Then g is injective.

 $3.^{\diamond}$ We introduce this definition for the notion of *union of functions* below:

• Let A, B, C, D be sets, and $f : A \longrightarrow C, g : B \longrightarrow D$ be functions. Suppose f(x) = g(x) for any $x \in A \cap B$. Define the function $f \cup g : A \cup B \longrightarrow C \cup D$ by $(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$.

The function $f \cup g$ is called the **union of the functions** f, g.

Consider each of the statements below. Determine whether it is true or false. Justify your answer with an appropriate argument.

- (a) Let A, B, C, D be sets, and $f : A \longrightarrow C$, $g : B \longrightarrow D$ be functions. Suppose f(x) = g(x) for any $x \in A \cap B$. Suppose f, g are surjective. Then $f \cup g : A \cup B \longrightarrow C \cup D$ is surjective.
- (b) Let A, B, C, D be sets, and $f : A \longrightarrow C, g : B \longrightarrow D$ be functions. Suppose f(x) = g(x) for any $x \in A \cap B$. Suppose f, g are injective. Then $f \cup g : A \cup B \longrightarrow C \cup D$ is injective.
- 4. Determine whether the statement (\sharp) is true. Justify your answer with an appropriate argument:
 - (\sharp) Let A, B be sets, and $f : A \longrightarrow B, g : A \longrightarrow B$ be functions. Suppose $\Phi : \mathsf{Map}(B, A) \longrightarrow \mathsf{Map}(A, B)$ is the function defined by $\Phi(p) = g \circ p \circ f$ for any $p \in \mathsf{Map}(B, A)$. Further suppose f is surjective and g is injective. Then Φ is injective.
- 5. (a) \diamond Is the statement (\sharp) true? Justify your answer with reference to the definition of *pre-image sets*:
 - (#) Let A, B be sets, and $f : A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $U \subset V$. Then $f^{-1}(U) \subset f^{-1}(V)$.
 - (b) \diamond Is the statement (b) true? Justify your answer with reference to the definition of *pre-image sets*:
 - (b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $f^{-1}(U) \subset f^{-1}(V)$. Then $U \subset V$.
- 6. (a)[◊] Is the statement (\$\$) true? Justify your answer with reference to the definitions of *image sets* and *pre-image sets*:

(#) Suppose A, B are sets, and $f: A \longrightarrow B$ is a function. Then for any subset S of A, $S \subset f^{-1}(f(S))$.

(b) \diamond Is the statement (b) true? Justify your answer with reference to the definitions of *image sets* and *pre-image sets*:

(b) Suppose A, B are sets, and $f: A \longrightarrow B$ is a function. Then for any subset S of A, $f^{-1}(f(S)) \subset S$.