1. Solution.

- (a) Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^2 \overline{z}$ for any $z \in \mathbb{C}$.
 - i. [We want to verify the statement 'for any $w \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that f(z) = w.'] Pick any $w \in \mathbb{C}$. We have w = 0 or $w \neq 0$.
 - * (Case 1.) Suppose w = 0. Then f(0) = 0 = w.
 - * (Case 2.) Suppose $w \neq 0$. (Note that $|w| \neq 0$. Then $\frac{1}{\sqrt[3]{|w|}}$ is well-defined as a complex number.)

Define $z = \frac{w}{(\sqrt[3]{|w|})^2}$. By definition, $z \in \mathbb{C}$.

We have
$$f(z) = z^2 \bar{z} = \left(\frac{w}{(\sqrt[3]{|w|})^2}\right)^2 \overline{\left[\frac{w}{(\sqrt[3]{|w|})^2}\right]} = \frac{w^2 \bar{w}}{(\sqrt[3]{|w|})^6} = \frac{w|w|^2}{|w|^2} = w.$$

It follows that f is surjective.

ii. [We want to verify the statement 'for any $u, v \in \mathbb{C}$, if f(u) = f(v) then u = v.'] Pick any $u, v \in \mathbb{C}$. Suppose f(u) = f(v). Then $|u|^3 = |u^2 \overline{u}| = |f(u)| = |f(v)| = |v^2 \overline{v}| = |v|^3$. Since $|u|, |v| \in \mathbb{R}$, we have |u| = |v|. Now $u|u|^2 = u^2 \overline{u} = f(u) = f(v) = v^2 \overline{v} = v|v|^2 = v|u|^2$. Then $(u - v)|u|^2 = 0$. Therefore u - v = 0 or $|u|^2 = 0$. * (Case 1.) Suppose u - v = 0. Then u = v. * (Case 2.) Suppose $u - v \neq 0$. Then $|u|^2 = 0$. Therefore u = 0. Also, |v| = |u| = 0. Then u = 0 = v.

Hence, in any case u = v.

It follows that f is injective.

- (b) Write $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Let $g : \mathbb{C}^* \longrightarrow \mathbb{C}$ be the function defined by $g(z) = z/\bar{z}$ for any $z \in \mathbb{C}^*$.
 - i. [We want to verify the statement 'there exist some $u_0, v_0 \in \mathbb{C}^*$ such that $g(u_0) = g(v_0)$ and $u_0 \neq v_0$ '.] Take $u_0 = 1, v_0 = -1$. We have $u_0, v_0 \in \mathbb{C}^*$ and $u_0 \neq v_0$. We have $g(u_0) = 1$ and $g(v_0) = 1$. Then $g(u_0) = g(v_0)$. It follows that g is not injective.
 - ii. [We want to verify the statement 'There exists some $w_0 \in \mathbb{C}$ such that for any $z \in \mathbb{C}^*$, $g(z) \neq w_0$.'] Take $w_0 = 2$. Note that $w_0 \in \mathbb{C}$. We verify with the proof-by-contradiction method, that for any $z \in \mathbb{C}^*$, $g(z) \neq w_0$:
 - Suppose there existed some z ∈ C* such that g(z) = w₀. Then |g(z)| = |w₀| = 2. For the same z, we have |g(z)| = |z/z̄| = |z|/|z̄| = |z|/|z| = 1 ≠ 2. Now |g(z)| = 2 and |g(z)| ≠ 2. Contradiction arises.
 It follows that g is not surjective.

2. Solution.

Denote the interval $(0, +\infty)$ by I. Let $f: I \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{1}{2}\left(x - \frac{1}{x}\right)$ for any $x \in I$.

(a) Pick any $x, w \in I$. Suppose f(x) = f(w). Then $\frac{1}{2}\left(x - \frac{1}{x}\right) = \frac{1}{2}\left(w - \frac{1}{w}\right)$. We have $x^2w - w = w^2x - x$. Therefore $xw(x - w) = x^2w - w^2x = w - x$. Hence (xw + 1)(x - w) = 0. Since $x, w \in I$, we have x > 0, w > 0 and xw + 1 > 0. Therefore x - w = 0. Hence x = w. It follows that f is injective. (b) Pick any $y \in \mathbb{R}$. Take $x = y + \sqrt{y^2 + 1}$. Note that $x \in I$.

We have
$$f(x) = \frac{1}{2} \left(x - \frac{1}{x} \right) = \frac{1}{2} \left(y + \sqrt{y^2 + 1} - \frac{1}{y + \sqrt{y^2 + 1}} \right)$$

$$= \frac{1}{2} \left[y + \sqrt{y^2 + 1} - \frac{y - \sqrt{y^2 + 1}}{(y + \sqrt{y^2 + 1})(y - \sqrt{y^2 + 1})} \right] = \frac{1}{2} (y + \sqrt{y^2 + 1} + y - \sqrt{y^2 + 1}) = y.$$

It follows that f is surjective.

3. Solution.

Let $f: (0, +\infty) \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4} \cos\left(\frac{1}{x\sqrt{x}}\right)$ for any $x \in (0, +\infty)$.

- (a) Take $x_0 = \frac{2^{2/3}}{\pi^{2/3}}$, $w_0 = \frac{2^{2/3}}{3^{2/3}\pi^{2/3}}$. Note that $x_0, w_0 \in (0, +\infty)$ and $x_0 \neq w_0$. Also note that $f(x_0) = 0 = f(w_0)$. It follows that f is not injective.
- (b) i. Let $x \in (0, +\infty)$. We have $|x^2 2x + 4| \le |x^2 + 4| + |2x| = x^2 + 2x + 4 = |x^2 + 2x + 4|$. Note that $|x^2 + 2x + 4| > 0$. Then $\left|\frac{x^2 2x + 4}{x^2 + 2x + 4}\right| \le 1$.

ii. Take $y_0 = 2$. We verify that for any $x \in (0, +\infty)$, we have $f(x) \neq y_0$:

• Let $x \in (0, +\infty)$. We have $|f(x)| = \left|\frac{x^2 - 2x + 4}{x^2 + 2x + 4}\cos\left(\frac{1}{x\sqrt{x}}\right)\right| \le \left|\frac{x^2 - 2x + 4}{x^2 + 2x + 4}\right| \cdot \left|\cos\left(\frac{1}{x\sqrt{x}}\right)\right| \le 1 \cdot 1 = 1 < 2.$ Then $f(x) \ne 2$.

It follows that f is not surjective.

4. Answer.

- (a) No. Note that f(0) = f(1).
- (b) No. Note that $f(x) \neq 1$ for any $x \in \mathbb{R}$.

5. Answer.

- (a) —
- (b) No. Note that $f(1) = f(\cos(2\pi/n) + i\sin(2\pi/n))$.

6. Answer.

- (a) Yes. You may need to use the Fundamental Theorem of Algebra here.
- (b) No. Observe that h(2) = h(-2).