1. (a) **Answer.**

Let S, T be sets. We say S is a subset of T if the statement (\dagger) holds:

(†) For any object x, if $x \in S$ then $x \in T$.

(b) Answer.

Let A, B be sets. The union of the sets A, B is defined to be the set $\{x \mid x \in A \text{ or } x \in B\}$.

(c) **Solution.**

Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$.

[We want to deduce $A \cup B \subset C \cup D$. According to definition, this is the same as deducing 'For any object x, if $x \in A \cup B$ then $x \in C \cup D$ '.]

Pick any object x.

Suppose $x \in A \cup B$. [We ask whether it is true that $x \in C \cup D$.]

By the definition of union, $x \in A$ or $x \in B$.

- (Case 1). Suppose $x \in A$. Then, since $A \subset C$, we have $x \in C$ by the definition of subset relation. Therefore $x \in C$ or $x \in D$. Hence $x \in C \cup D$ by the definition of union.
- (Case 2). Suppose $x \notin A$. Then $x \in B$. Therefore, since $B \subset D$, we have $x \in D$. Then $x \in C$ or $x \in D$. Hence $x \in C \cup D$.

Hence, in any case, we have $x \in C \cup D$. It follows that $A \cup B \subset C \cup D$.

2. (a) Answer.

Let K, L be sets. We say H is equal to K as sets if both statements $(\star), (\star\star)$ hold:

- (\star) *H* is a subset of *K*.
- $(\star\star)$ K is a subset of H.

(b) —

3. (a) Answer.

Let A, B be sets.

The intersection of the sets A, B is defined to be the set $\{x \mid x \in A \text{ and } x \in B\}$.

The complement of the set B in the set A is defined to be the set $\{x \mid x \in A \text{ and } x \notin B\}$.

(b) i. *Hint.* Apply the method of proof-by-contradiction, starting in this way:

Let A, B be sets. Suppose $A \subset A \setminus B$.

Further suppose it were true that $A \cap B \neq \emptyset$.

Now pick some element of $A \cap B$, and see whether a contradiction can be reached.

ii. *Hint.* Start in this way:

Let A, B be sets. Suppose $A \cap B = \emptyset$. [We try to deduce 'for any object x, if $x \in A$ then $x \in B$ '.] Pick any object x. Suppose $x \in A$.

Then apply the method of proof-by-contradiction to verify ' $x \in B$ '.

```
(c) -
```

```
4. ——
```

5. —

6. ——

7. (a) **Answer.**

Let C be a set. The power set of C is defined to be the set $\{S \mid S \text{ is a subset of } C\}$.

(b) Reminder. Always remember: $T \in \mathfrak{P}(C)$ iff $T \subset C$.

8. —