MATH1050 Proof-writing Exercise 4 (Answers and selected solutions)

1. Solution. There are two acceptable arguments. Acceptable argument (A).

Let r be a real number greater than 1. Denote by P(n) the proposition below:

Suppose a_1, a_2, \dots, a_n are positive real numbers. Then $\log_r\left(\prod_{j=1}^n a_j\right) = \sum_{j=1}^n \log_r(a_j)$.

- Suppose a, b are positive real numbers. Then log_r(ab) = log_r(a) + log_r(b) by (♯). It follows that P(2) is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose P(k) is true. We verify that P(k+1) is true:
 - * Suppose $a_1, a_2, \cdots, a_k, a_{k+1}$ are positive real numbers. Since a_1, a_2, \cdots, a_k are positive real numbers, $a_1 a_2 \cdots a_k$ is a positive real number. Then

$$\log_r \left(\prod_{j=1}^{k+1} a_j \right) = \log_r \left(\left(\prod_{j=1}^k a_j \right) \cdot a_{k+1} \right)$$
$$= \log_r \left(\prod_{j=1}^k a_j \right) + \log_r(a_{k+1}) \qquad (by \ (\sharp))$$
$$= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad (by \ P(k))$$
$$= \sum_{j=1}^{k+1} \log_r(a_j)$$

Hence P(k+1) is true.

By the Principle of Mathematical Induction, P(n) is true for any positive integer $n \in \mathbb{N} \setminus \{0, 1\}$. Acceptable argument (B), but not preferrable.

Let r be a real number greater than 1. Let $\{a_j\}_{j=1}^{\infty}$ be an infinite sequence of positive real numbers. Denote by S(n) the proposition below:

$$\log_r \left(\prod_{j=1}^n a_j\right) = \sum_{j=1}^n \log_r(a_j).$$

- We have $\log_r(a_1a_2) = \log_r(a_1) + \log_r(a_2)$ by (\sharp) . Then S(2) is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose S(k) is true. We verify that S(k+1) is true:
 - * Since a_1, a_2, \dots, a_k are positive real numbers, $a_1 a_2 \dots a_k$ is a positive real number. Then

$$\log_r \left(\prod_{j=1}^{k+1} a_j \right) = \log_r \left(\left(\prod_{j=1}^k a_j \right) \cdot a_{k+1} \right)$$
$$= \log_r \left(\prod_{j=1}^k a_j \right) + \log_r(a_{k+1}) \qquad (by \ (\sharp))$$
$$= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad (by \ S(k))$$
$$= \sum_{j=1}^{k+1} \log_r(a_j)$$

Hence S(k+1) is true.

By the Principle of Mathematical Induction, S(n) is true for any positive integer $n \in \mathbb{N} \setminus \{0, 1\}$.

- 2. —
- 3. ——

4. Solution.

- (a) Let A, B be $(m \times m)$ -square matrices with real entries. Suppose A, B are non-singular.
 - We verify that AB is non-singular: Pick any $\mathbf{x} \in \mathbb{R}^m$. Suppose $AB\mathbf{x} = \mathbf{0}$. We have $A(B\mathbf{x}) = \mathbf{0}$. Then, since A is non-singular, $B\mathbf{x} = \mathbf{0}$. Then, since B is non-singular, we have $\mathbf{x} = \mathbf{0}$.

It follows that AB is non-singular.

- (b) i. Let n be an integer greater than 1. Let A_1, A_2, \dots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \dots, A_n are non-singular. Then $A_1A_2 \cdots A_n$ is non-singular.
 - ii. Denote by P(n) the proposition below:

Let A_1, A_2, \dots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \dots, A_n are non-singular. Then $A_1A_2 \cdots A_n$ is non-singular.

- P(2) is true by the result of part (a).
- Let k be an integer greater than 1. Suppose P(k) is true.

We verify that P(k+1) is true:

Let $A_1, A_2, \dots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix. Suppose $A_1, A_2, \dots, A_k, A_{k+1}$ is non-singular. Write $C = A_1 A_2 \dots A_k$. By P(k), since A_1, A_2, \dots, A_k are non-singular, the product C is non-singular. Note that $A_1 A_2 \dots A_k A_{k+1} = C A_{k+1}$. Then, by the result of part (a), $A_1 A_2 \dots A_k A_{k+1}$ is non-singular.

By the Principle of Mathematical Induction, P(n) is true for any integer greater than 1.

Alternative 'inductive step'.

• Let k be an integer greater than 1. Suppose P(k) is true. We verify that P(k+1) is true:

Let $A_1, A_2, \dots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix.

- Suppose $A_1, A_2, \dots, A_k, A_{k+1}$ is non-singular.
- By the result in part (a), since A_k, A_{k+1} are non-singular, A_kA_{k+1} is non-singular.

 $A_1, A_2, \dots, A_{k-1}, A_k A_{k+1}$ are non-singular. Then by P(k), the product $A_1 A_2 \dots A_{k-1} A_k A_{k+1}$ is non-singular.

5. (a) **Answer.**

Let n be an integer greater than 1. For any integer m between $\underline{2}$ and n, the integer m is a prime number or m is a product of at least two prime numbers.

(b) —

6. Solution.

[We want to prove this statement: 'Suppose S is a subset of \mathbb{R} . Further suppose λ, μ are greatest elements of S. Then $\lambda = \mu$.']

Suppose S is a subset of \mathbb{R} . Further Suppose λ, μ are greatest element of S.

By definition of greatest element, we have $x \leq \lambda$ for any $x \in S$. Also by definition of greatest element, $\mu \in S$. Then $\mu \leq \lambda$.

Modifying the argument above (by interchanging the roles of λ, μ), we have $\lambda \leq \mu$.

We have $\mu \leq \lambda$ and $\lambda \leq \mu$. Then $\lambda = \mu$.

7. Comment.

The statement to be proved should be formulated as:

• Let ζ be a complex number. Suppose ζ is neither real nor purely imaginary. Let z be a complex number. Let a, b, c, d be real numbers. Suppose $z = a\zeta + b\overline{\zeta}$ and $z = c\zeta + d\overline{\zeta}$. Then a = c and b = d.

The argument should start in this way:

Let ζ be a complex number. Suppose ζ is neither real nor purely imaginary.

Pick any complex number z. Let a, b, c, d be real numbers. Suppose $z = a\zeta + b\overline{\zeta}$ and $z = c\zeta + d\overline{\zeta}$.

8. Comment.

The statement to be proved should be formulated as:

• Let p be a positive real number, and q be a real number. Suppose f(x) be the cubic polynomial given by $f(x) = x^3 + px + q$.

Let v be a real number. Let α, β be real numbers. Suppose ' $u = \alpha$ ', ' $u = \beta$ ' are real solutions of the equation f(u) = v with unknown u.

Then $\alpha = \beta$.

9. Solution.

[We want to prove this statement: 'Let I be an interval in \mathbb{R} , and $f, g: I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Let $c, c' \in I$. Suppose f(c) = g(c) and f(c') = g(c'). Then c = c'.]

Let I be an interval in \mathbb{R} , and $f, g: I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Pick any $c, c' \in I$. Suppose f(c) = g(c) and f(c') = g(c'). We verify that c = c' by the proof-by-contradiction method:

• Suppose it were true that $c \neq c'$.

Without loss of generality, assume c < c'. Since f is strictly increasing on I, we would have f(c) < f(c'). Since g is strictly decreasing on I we would have g(c) > g(c'). Recall that f(c) = g(c) and f(c') = g(c'). Then f(c) < f(c') = g(c') < g(c) = f(c). Therefore f(c) < f(c). Contradiction arises.

10. Solution.

[We want to prove this statement: 'For any $\mathbf{v} \in \mathbb{R}^n$, for any $c_1, c_2, \cdots, c_k, d_1, d_2, \cdots, d_k \in \mathbb{R}$, if $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k$ and $\mathbf{v} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \cdots + d_k \mathbf{u}_k$ then $c_1 = d_1, c_2 = d_2, \ldots$ and $c_k = d_k$.']

Pick any $\mathbf{v} \in \mathbb{R}^n$.

Let $c_1, c_2, \cdots, c_k, d_1, d_2, \cdots, d_k \in \mathbb{R}$.

Suppose that $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$ and $\mathbf{v} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k$.

Then $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{v} = d_1\mathbf{u}_1 + d_2\mathbf{u}_2 + \dots + d_k\mathbf{u}_k.$

Therefore $(c_1 - d_1)\mathbf{u}_1 + (c_2 - d_2)\mathbf{u}_2 + \dots + (c_k - d_k)\mathbf{u}_k = \mathbf{0}.$

Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent, we have $c_1 - d_1 = c_2 - d_2 = \cdots = c_k - d_k = 0$.

Then $c_1 = d_1, c_2 = d_2, ..., and c_k = d_k$.