MATH1050 Proof-writing Exercise 4 (Answers and selected solutions)

1. Solution. There are two acceptable arguments.
Acceptable argument (A).

Let r be a real number greater than 1. Denote by P(n) the proposition below:

Suppose a1, as,- - ,a, are positive real numbers. Then log, H a; Z log,.(a;).
j=1

¢ Suppose a, b are positive real numbers. Then log,.(ab) = log,.(a) + log,.(b) by ().
It follows that P(2) is true.

o Let k € N\{0,1}. Suppose P(k) is true. We verify that P(k 4 1) is true:

* Suppose ai,asg,- - ,ak, g1 are positive real numbers.
Since aq,aqg, - - ,a are positive real numbers, ajas - - - ai is a positive real number.
Then
k+1 k
logr H a; = logr H aj | - Qg+1
j=1 J=1
= log, H +log, (ax41) (by (£))
k
= ) log,(a;) +log, (a41) (by P(k))
j=1
k41

= Z log,.(a;)

Hence P(k + 1) is true.

By the Principle of Mathematical Induction, P(n) is true for any positive integer n € N\{0, 1}.
Acceptable argument (B), but not preferrable.

Let 7 be a real number greater than 1. Let {a;}72; be an infinite sequence of positive real numbers. Denote by

S(n) the proposition below:

log, | [Tas | = log,(ay).
j=1 j=1

o We have log,.(ajas) = log,(a1) + log,(az) by (§).
Then S(2) is true.

o Let k € N\{0,1}. Suppose S(k) is true. We verify that S(k + 1) is true:

x Since ay,ao,- - ,a are positive real numbers, aias - - - ay is a positive real number.
Then

k+1

log,. H aj
j=1

log,. H aj | - Qg1

= log, H + log, (ag+1) (by (%))
k
= Zlogr(aj) + log, (ak+1) (by S(k))
j=1
k+1

= Z logr (a‘j )
j=1



Hence S(k + 1) is true.

By the Principle of Mathematical Induction, S(n) is true for any positive integer n € N\{0, 1}.
2. —
3. —
4. Solution.

(a) Let A, B be (m X m)-square matrices with real entries. Suppose A, B are non-singular.
We verify that AB is non-singular:
Pick any x € R™. Suppose ABx = 0.
We have A(Bx) = 0. Then, since A is non-singular, Bx = 0.

Then, since B is non-singular, we have x = 0.
It follows that AB is non-singular.
(b) i. Letn be an integer greater than 1. Let Ay, Ay, --- , A, be (mxm)-square matrices. Suppose Ay, Ag, -+, A,
are non-singular. Then A Ay --- A, is non-singular.
ii. Denote by P(n) the proposition below:
Let Ay, Ag, -+, A, be (m x m)-square matrices. Suppose Aj, As, -+, A, are non-singular. Then
Ay Ay - -+ A, is non-singular.
e P(2) is true by the result of part (a).
o Let k be an integer greater than 1. Suppose P(k) is true.
We verify that P(k + 1) is true:
Let Ay, A, -+, A, Ar11 be (m x m)-square matrix.
Suppose A1, Ag, -+, Ak, Agy1 is non-singular. Write C = A1 Ay -+ - Ay.
By P(k), since Ay, Ag,--- , Ay are non-singular, the product C' is non-singular.
Note that A Ay --- AkAk+1 = OAk+1.
Then, by the result of part (a), A1 As - ApAgy1 is non-singular.
By the Principle of Mathematical Induction, P(n) is true for any integer greater than 1.

Alternative ‘inductive step’.
e Let k be an integer greater than 1. Suppose P(k) is true.
We verify that P(k + 1) is true:
Let Ay, A, -+, Ak, Ar11 be (m x m)-square matrix.
Suppose A1, Ag, -+, Ak, A1 is non-singular.
By the result in part (a), since Ay, Agt+1 are non-singular, AgAg41 is non-singular.
Ay, Ag, - Ag—1, Ap Ay are non-singular. Then by P(k), the product AjAs -+ Ag_1 A Agy1 is

non-singular.

5. (a) Answer.

Let n be an integer greater than 1. For any integer m between 2 and n, the integer m is a prime number or

m is a product of at least two prime numbers.

(b) —

6. Solution.

[We want to prove this statement: ‘Suppose S is a subset of R. Further suppose A, yu are greatest elements of
S. Then A = p.’]

Suppose S is a subset of IR. Further Suppose A, 1 are greatest element of S.

By definition of greatest element, we have x < X for any = € S. Also by definition of greatest element, u € S.
Then p < A.

Modifying the argument above (by interchanging the roles of A, 1), we have A < p.
We have p < XA and A < p. Then A = p.

7. Comment.

The statement to be proved should be formulated as:



10.

11.

e Let ( be a complex number. Suppose ( is neither real nor purely imaginary. Let z be a complex number. Let
a,b, c,d be real numbers. Suppose z = a4+ b( and z = ¢ +d(. Then a = ¢ and b = d.

The argument should start in this way:

Let ¢ be a complex number. Suppose ( is neither real nor purely imaginary.

Pick any complex number z. Let a,b, ¢, d be real numbers. Suppose z = al + b and z = ¢{ + d.

Comment.

The statement to be proved should be formulated as:

o Let p be a positive real number, and g be a real number. Suppose f(x) be the cubic polynomial given by
flx) =2 +pr+q.
Let v be a real number. Let «, 3 be real numbers. Suppose ‘u = o’, ‘u = 3’ are real solutions of the equation
f(w) = v with unknown wu.

Then o = .

Solution.

[We want to prove this statement: ‘Let I be an interval in R, and f,g : I — R be functions. Suppose f is
strictly increasing on I and g is strictly decreasing on I.

Let ¢,c’ € I. Suppose f(c) = g(c) and f(¢') = g(¢’). Then ¢ =c'.]

Let I be an interval in IR, and f,g : I — R be functions. Suppose f is strictly increasing on I and g is strictly
decreasing on I.

Pick any ¢,/ € I. Suppose f(c) = g(c) and f(c') = g(¢’). We verify that ¢ = ¢ by the proof-by-contradiction
method:
o Suppose it were true that ¢ # ¢'.

Without loss of generality, assume ¢ < c’.

Since f is strictly increasing on I, we would have f(c) < f(c).

Since g is strictly decreasing on I we would have g(c) > g(c).
Recall that f(c) = g(c) and f(¢') = g(c).
Then f(c) < f(¢) = g(c’) < g(¢) = f(c). Therefore f(c) < f(c). Contradiction arises.

Solution.

[We want to prove this statement: ‘For any v € R™, for any ¢1,co, -+, ¢k, d1,da, -+ ,di € R, if v=ciu; +
CoUsg + - -+ + CcpUug and v = d1u1 + d2112 —+ -4 dkuk then c1 = dl, Cy = dQ, ... and C = dk.7]

Pick any v € IR™.

Let ¢1,c0, -+ ,cp,dy,do, -+ ,dr € R.

Suppose that v = c;u; + coug + -+ - + cguy and v = dyuy + doug + - - - + dpug.

Then ciuy + coug + -+ -+ cpu, = v =diu; + dous + - - - + diuy.

Therefore (¢; — di)ug + (¢ — do)ug + - -+ + (cx — dg)ux = 0.

Since up,us, -+ ,uy are linearly independent, we have ¢y —dy = ¢y —do =--- = ¢ — di, = 0.

Then ¢y = dy, co = do, ..., and ¢ = dj.



