1. (a) Solution.

Let $A = \{\zeta \in \mathbb{C} : |\zeta - i| < 1\}, B = \{\zeta \in \mathbb{C} : |\zeta + i| < 3\}.$ [*Pictorial roughwork.* Give a sketch of A, B on the Argand plane. A is the open disc with centre i and radius 1. B is the open disc with centre -i and radius 3. The former lies entirely inside the latter.] i. We verify $A \subset B$.

[*Reminder*. This amounts to proving 'for any $\zeta \in \mathbb{C}$, if $\zeta \in A$ then $\zeta \in B$ '.]

Pick any $\zeta \in \mathbb{C}$. Suppose $\zeta \in A$.

We have $|\zeta - i| < 1$ (by the definition of A).

By the Triangle Inequality, we have $|\zeta + i| = |\zeta - i + 2i| \le |\zeta - i| + |2i| = |\zeta - i| + 2 < 1 + 2 = 3$. Then $|\zeta + i| < 3$. Therefore, we have $\zeta \in B$ (by the definition of B). It follows that $A \subset B$.

ii. We verify $B \not\subset A$.

[*Reminder*. This amounts to proving 'there exists some $\zeta_0 \in \mathbb{C}$ such that $\zeta_0 \in B$ and $\zeta_0 \notin A$ '.]

Take $\zeta_0 = 0$. By definition, $\zeta_0 \in \mathbb{C}$. Note that $|\zeta_0 + i| = |0 + i| = 1 < 3$. Then $\zeta_0 \in B$. We verify that $\zeta_0 \notin A$: • We have $|\zeta_0 - i| = |0 - i| = 1 \ge 1$.

Then $\zeta_0 \notin A$.

It follows that $B \not\subset A$.

(b) Hint.

 ${\cal D}$ is the closed disc with centre 0 and radius 5.

E is the closed elliptical region with centre 0, foci at 4, -4, vertices at 5, -5 and covertices 3i, -3i. (Its boundary is given by the equation $\frac{(\operatorname{Re}(z))^2}{25} + \frac{(\operatorname{Im}(z))^2}{9} = 1$ with complex unknown *z*.)

Answer.

i. $D \not\subset E$.

Hint for the argument.

5i belongs to D and does not belong to E.

ii. $E \subset D$.

Hint for the argument.

The key step is to make use of the inequality $|2z| \leq |z-4| + |z+4|$ which holds for any arbitrary complex number z.

(c) *Hint*.

E is the closed elliptical region with centre 0, foci at 4, -4, vertices at 5, -5 and covertices 3i, -3i.

 ${\cal F}$ is the closed disc with centre 0 and radius 3.

Answer.

i. $E \not\subset F$.

Hint for the argument.

4 belongs to E and does not belong to F.

ii. $F \subset E$.

Hint for the argument.

Make use of the relation $(|z - 4| + |z + 4|)^2 = 2|z|^2 + 32 + 2|z^2 - 16|$, which holds for any arbitrary complex number z.

Also make use of the inequality $|z^2 - 16| \le |z^2| + 16$ which holds for any arbitrary complex number z.

2. Answer.

(a) i. $A \subset B$.

- ii. $B \not\subset A$. *Hint on the argument.* $-\frac{1}{9}$ belongs to *B* and does not belong to *A*.
- (b) i. $C \subset D$.
 - ii. D ⊄ C.
 Hint on the argument.
 2 belongs to D and does not belong to C.

3. Answer.

- (a) $B \subset A$.
- (b) A ∉ B.
 Hint on the argument.
 12 belongs to A and does not belong to B.

4. Answer.

- (a) $A \subset B$.
- (b) $B \not\subset A$.
 - Hint on the argument.

 γ^2 belongs to B and does not belong to A.

(In fact, for any $a, b, c \in \mathbb{Q}$, if $c \neq 0$ then $a + b\gamma + c\gamma^2$) belongs to B and does not belong to A.

The key idea in the argument for ' $\gamma^2 \notin A$ ' is described below:

If $\gamma^2 \in A$, then, with the help of the relation $\gamma^3 = 2$, we would obtain a relation of the form $p\gamma = q$, in which p, q are some appropriate rational numbers. This in turn leads to a contradiction.

5. —