$1. \ Comment.$

Whenever you want to write a fractional expression $\frac{blah-blah-blah}{bleh-bleh}$, you must make sure the denominator *bleh-bleh-bleh* has been known (whether by being assumed or by being verified) to be non-zero.

2. Comment.

Be aware that the assumption ' $x, y \in \mathbb{Z}$ and x is divisible by y and y is divisible by x' does not preclude the possibilities 'x = 0', 'y = 0'.

Be careful when you are tempted to write an expression like $\frac{y}{x}$, or 'cancelling' x from both sides of an equality in which the expressions contain the 'factor' x.

3. (a) Solution.

Let a, b be complex numbers. Suppose $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Further suppose it were true that both of a, b were zero.

Then we would have $a^4 + a^3b + a^2b^2 + ab^3 + b^4 = 0^4 + 0^3 \cdot 0 + 0^2 \cdot 0^2 + 0 \cdot 0^3 + 0^4 = 0$. However, by assumption, $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Then $0 \neq 0$. Contradiction arises. Hence at least one of a, b is non-zero in the first place.

(b) Solution.

Let a, b be real numbers. Suppose ab > 1. Further suppose it were true that $a^2 + 4b^2 \le 4$. Since ab > 1, we have -4ab < -4. Therefore $(a - 2b)^2 = a^2 + 4b^2 - 4ab < 4 - 4 = 0$.

Since a, b are real numbers, $(a - 2b)^2 \ge 0$.

Then $0 \le (a - 2b)^2 < 0$. Contradiction arises.

Hence $a^2 + 4b^2 > 4$ in the first place.

(c) Solution.

Let ζ be a complex number. Suppose that $|\zeta| \leq \varepsilon$ for any positive real number ε . Further suppose it were true that $\zeta \neq 0$.

Since $\zeta \neq 0$, we would have $|\zeta| \neq 0$. Then $|\zeta| > 0$.

Define
$$\varepsilon = \frac{|\zeta|}{2}$$
. Since $|\zeta| > 0$ and $\frac{1}{2} > 0$, we would have $\varepsilon > 0$.

Then by assumption, $|\zeta| \leq \varepsilon = \frac{|\zeta|}{2}$.

Therefore
$$\frac{|\zeta|}{2} = |\zeta| - \frac{|\zeta|}{2} \le 0$$
. Hence $|\zeta| = 2 \cdot \frac{|\zeta|}{2} \le 0$ (because $2 > 0$).

Now we have $0 < |\zeta| \le 0$. Contradiction arises.

Hence $\zeta = 0$ in the first place.

- 4. —
- 5. ——
- 6. —
- 7. (a) —

(b) i. Solution.

Let α be a non-zero complex number. Suppose α is algebraic.

By definition, there exists some non-constant polynomial f(x) whose coefficients are rational numbers such that $f(\alpha) = 0$.

For the same f(x), there exist some positive integer k and some rational numbers $a_0, a_1, a_2, \dots, a_k$ such that one of a_k is non-zero and $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_kx^k$ as polynomials.

Define the polynomial g(x) by $g(x) = a_0 x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k$.

By definition, g(x) is a polynomial whose coefficients are rational numbers.

We verify that at least one of a_0, a_1, \dots, a_{k-1} is non-zero, with the proof-by-contradiction argument:

• Suppose it were true that $a_0 = a_1 = \cdots = a_{k-1} = 0$. Then $f(x) = a_k x^k$ as a polynomial. Since $f(\alpha) = 0$, we would have $a_k \alpha^k = 0$. Since $a_k \neq 0$, we would have $\alpha^k = 0$. Then $\alpha = 0$. Contradiction arises.

Now it follows that g(x) is is non-constant.

We have
$$g(\frac{1}{\alpha}) = a_0 \left(\frac{1}{\alpha}\right)^k + a_1 \left(\frac{1}{\alpha}\right)^{k-1} + a_2 \left(\frac{1}{\alpha}\right)^{k-2} + \dots + a_k = \frac{1}{\alpha^k} \cdot (a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_k\alpha^k) = \frac{1}{\alpha^k} \cdot f(\alpha) = 0.$$

Therefore, by definition, $\frac{1}{\alpha}$ is algebraic.

ii. ——

- iii. ——
- (c) *Comment.* Apply the proof-by-contradiction argument, and make use of the results established in the previous part.

8. ——