MATH1050 Proof-writing Exercise 2

Advice.

- All the questions are concerned with the handling of 'there exists' and/or with proof-by-contradiction argument.
- When doing proofs, remember to adhere to definition, always. Study the handouts *Basic results on divisibility*, and *Rationals and irrationals*.
- Besides the handout mentioned above, Question (6), Question (7), Question (8), Question (9) in Assignment 2 are also suggestive on what it takes to give the types of argument meant to be written here, and on the level of rigour required.
- 1. Prove the statements below:
 - (a) Let x, y be real numbers. Suppose x, y are rational. Then x y is rational.
 - (b) Let x, y be real numbers. Suppose x, y are rational and $y \neq 0$. Then $\frac{x}{y}$ is rational.
- 2. Prove the statement (\sharp) :

(#) Let $x, y \in \mathbb{Z}$. Suppose x is divisible by y and y is divisible by x. Then |x| = |y|.

- 3. Apply proof-by-contradiction to justify the statements below:
 - (a) Let a, b be complex numbers. Suppose $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Then at least one of a, b is non-zero.
 - (b) Let a, b be real numbers. Suppose ab > 1. Then $a^2 + 4b^2 > 4$.
 - (c) Let ζ be a complex number. Suppose that $|\zeta| \leq \varepsilon$ for any positive real number ε . Then $\zeta = 0$.

4. In this question, take for granted that $\sqrt{2}, \sqrt{3}$ are irrational numbers.

Apply proof-by-contradiction to justify the statements below:

(a) $\sqrt{2} + \sqrt{3}$ is an irrational number.

Remark. *Hint.* Write $r = \sqrt{2} + \sqrt{3}$. Can you re-express one of $\sqrt{2}$, $\sqrt{3}$ as a fractional expression whose numerator and denominator involve only integers and the non-negative integral powers of r?

(b) $\sqrt{3} - \sqrt{2}$ is an irrational number.

Remark. See if you can generalize the argument to prove the statement (\sharp) :

- (#) Suppose a, b are non-zero rational numbers. Then $a\sqrt{2} + b\sqrt{3}$ is an irrational number.
- 5. Take for granted the validity of Euclid's Lemma where appropriate and necessary. You may also take for granted that 2, 3, 5 are prime numbers.

Apply proof-by-contradiction to justify the statements below:

- (a) $\sqrt{3}$ is an irrational number.
- (b) $\sqrt[3]{5}$ is an irrational number.
- (c) $\sqrt[3]{4}$ is an irrational number.
- 6. Apply proof-by-contradiction to justify the statements below:
 - (a) 2 is not divisible by 3.

Remark. Apply the definition for the notion of divisibility to obtain an equality with 2 on one side and an expression involving 3 and some intger on the other side. Then obtain a contradiction by considering the magnitudes of the integers involved.

- (b) \diamond 3 is not divisible by 2.
- (c) $\checkmark \sqrt{6}$ is irrational.

Remark. Take for granted the validity of Euclid's Lemma where appropriate and necessary. You may also need the results described in the previous parts.

- 7. We introduce the definitions for the notions of *algebraicity* and *transcendence* for complex numbers:
 - Let α be a complex number. We say that α is algebraic if there exists some non-constant polynomial f(x) whose coefficients are rational numbers such that $f(\alpha) = 0$.
 - Let τ be a complex number. We say that τ is transcendental if τ is not algebraic.
 - (a) Verify that the numbers below are algebraic:
 - i. 0.
 iii. i.
 v. $\sqrt{2}i$.
 vii. $\sqrt{2} + i$.

 ii. 1.
 iv. $\sqrt{2}$.
 vi. $\sqrt{2} + \sqrt{3}$.
 viii. $\sqrt{5 + \sqrt[3]{2}}$.
 - (b) Prove the statements below:
 - i. Let α be a non-zero complex number. Suppose α is algebraic. Then $\frac{1}{\alpha}$ is algebraic.

ii. Let α be a positive real number. Suppose α is algebraic. Then $\sqrt{\alpha}$ is algebraic.

- iii.^{*} Let α be a complex number. Suppose α is algebraic. Then α^2 is algebraic.
- (c) Prove the statements below:

i. Let τ be a non-zero complex number. Suppose τ is transcendental. Then $\frac{1}{\tau}$ is transcendental.

- ii. Let τ be a positive real number. Suppose τ is transcendental. Then τ^2 is transcendental.
- iii. Let τ be a positive real number. Suppose τ is transcendental. Then $\sqrt{\tau}$ is transcendental.
- 8. For each $n \in \mathbb{N} \setminus \{0\}$, define $A_n = \sum_{j=1}^n \frac{1}{j}$, $B_n = \sum_{k=1}^n \frac{1}{2k}$, $C_n = \sum_{k=1}^n \frac{1}{2k-1}$.
 - (a) i. Prove that $B_n = \frac{1}{2}A_n$ and $C_n = A_{2n} \frac{1}{2}A_n$ for any $n \in \mathbb{N} \setminus \{0\}$.
 - ii. Prove that $C_n B_n \ge \frac{1}{2}$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
 - (b) By applying proof-by-contradiction, or otherwise, prove that $\{A_n\}_{n=1}^{\infty}$ does not converge in \mathbb{R} . **Remark.** Take for granted the result about inequality for limits of infinite sequences:

Let $\{x_n\}_{n=0}^{\infty}$ be an infinite sequence of real number, and t be a real number. Suppose $x_n \ge t$ for any $n \in \mathbb{N}$. Also suppose $\{x_n\}_{n=0}^{\infty}$ converges in \mathbb{R} . Then $\lim_{n \to \infty} x_n \ge t$.