1. Answer.

- (a) $(\exists a)(\forall b)(\exists c)[P(c) \land [(\sim Q(a)) \lor (\sim R(b))]].$
- (b) $(\forall a)(\exists b)(\forall c)[(\sim P(a,c)) \lor [Q(a,b,c) \land (\sim R(a,b,c))]].$
- (c) $(\exists a)(\exists b)(\forall c)(\forall d)[[(\sim P(a,c)) \land (\sim Q(b,d))] \lor (\sim R(c,d))].$
- (d) $(\exists a)(\exists b)[P(a,b) \land [(\forall c)(\exists d)](\sim Q(a,b,c,d)) \lor (\sim R(a,b,c,d))]]].$
- $(e) \ (\exists a)[[(\exists b)(\forall c)P(b,c) \longrightarrow Q(a,b,c)] \land [(\exists d)(\forall e)[R(a,d,e) \land [(\sim S(a,d,e)) \lor (\sim T(a,d,e))]]]].$

2. Answer.

- (a) There exists some $x \in \mathbb{R}$ such that for any $s, t \in \mathbb{Q}$, there exists some $n \in \mathbb{Z}$ such that s < n < t and $|x n| \leq |t s|$.
- (b) There exists some $p \in \mathbb{R}$, such that for any $q \in \mathbb{R}$, $n \in \mathbb{N}$, there exist some $s, t \in \mathbb{R}$ such that |s t| < |q| and $|s^n t^n| \ge |p|$.
- (c) There exists some $s, t \in \mathbb{Q}$ such that for any $p, q \in \mathbb{R}$, there exists some $n \in \mathbb{Z}$ such that $|s t| \leq |q|$ and $(t^n > |p| \text{ or } s^n > |p|)$.
- (d) For any $n \in \mathbb{N}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $u, v \in \mathbb{C}$ such that $|u v| < \delta$ and $|u^n v^n| \ge \varepsilon$.
- (e) There exist some $p, q \in \mathbb{Z}$ such that for any $s, t \in \mathbb{Z}$, there exist some $m, n \in \mathbb{N}$ such that $|p+q| \ge s^m$ and $|p^n q| \ge t$ and $|p q^n| \ge t$.
- (f) There exists some $z \in \mathbb{C}$ such that for any $r \in \mathbb{R}$, there exists some $w \in \mathbb{C}$ such that $(|z w| \le r \text{ and } (z \in \mathbb{R} \text{ or } |w| \le r))$.
- (g) There exist some $z, w \in \mathbb{C}$ such that $|z w| \ge |z + w|$ and (for any $s \in \mathbb{R}$, there exists some $t \in \mathbb{R}$ such that $(|z s t| \le w \text{ and } |z| \ge 1)$).
- (h) There exist some $\zeta, \alpha, \beta \in \mathbb{C}$ such that (there exist some $s, t \in \mathbb{R}$ such that $\zeta = s\alpha + t\beta$) and (for any $p, q \in \mathbb{R}$, $\zeta \neq p\bar{\alpha} + q\bar{\beta}$.)

3. Answer.

- (a) There exist some $u, v, w \in \mathbb{R}$ such that u + v > w and (for any $s, t \in \mathbb{R}$, su + tv < w).
- (b) For any $u, v, w \in \mathbb{R}$, there exists some $s, t \in \mathbb{R}$ such that su + tv < w and $(s^2u + t^2v \ge w^2 \text{ or } s^3u + t^3v \ge w^3)$.
- (c) There exist some $u, v, w \in \mathbb{R}$ such that u + v < w and (there exist some $s, t \in \mathbb{R}$ such that for any $r \in \mathbb{R}$, $su + tv \ge rw$).
- (d) For any $u, v, w \in \mathbb{R}$, (there exist some $r, s, t \in \mathbb{R}$ such that $ru^2 + sv^2 + tw^2 > uvw$) or (there exist some $r, s, t \in \mathbb{R}$ such that $r^2u + s^2v + t^2w < uvw$.
- (e) There exist some $u, v, w \in \mathbb{R}$ such that (for any $r, s, t \in \mathbb{R}$, $ru^2 + sv^2 + tw^2 > 0$) and (there exist some $p, q \in \mathbb{R}$ such that $r^2u + s^2v + t^2w \ge pq$).
- (f) There exist some $u, v, w \in \mathbb{R}$ such that (for any $s, t \in \mathbb{R}$, if $su + tv \le w$ then $su^2 + tv^2 \ge w^2$) and (there exist some $p, q, r \in \mathbb{R}$ such that $(u + p)(v + q) \le rw$ and $(u + p)^2 + (v + q)^2 < r^2w^2$).