1. Answer.

(a) The statement $(P \to R) \to [(P \to Q) \land (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.

P	Q	R	$P \rightarrow Q$	$Q \! \rightarrow \! R$	$P \rightarrow R$	$(P \to Q) \land (Q \to R)$	$ (P \to R) \to [(P \to Q) \land (Q \to R)]$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	F
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Remark. Do you see what is wrong in the logic behind the word 'therefore' in the argument below?

- If John visits his girlfriend then John puts aside his books. Therefore, if John visits his girlfriend then John plays football; furthermore, if John plays football then John puts aside his books.
- (b) The statement $(P \to Q) \to [(P \to R) \lor (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$Q \! \rightarrow \! R$	$(P \!\rightarrow\! R) \vee (Q \!\rightarrow\! R)$	$(P \!\rightarrow\! Q) \rightarrow [(P \!\rightarrow\! R) \lor (Q \!\rightarrow\! R)]$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

2. Answer.

(a)

P	Q	$P \rightarrow Q$	$(P\!\rightarrow\!Q)\!\rightarrow\!Q$	$Q\!\rightarrow\!P$	$Q\!\rightarrow (Q\!\rightarrow\!P)$	$\sim P$	$(P \!\rightarrow\! Q) \!\rightarrow\! (\sim\! P)$	$Q \rightarrow (\sim P)$	$P \!\rightarrow\! [Q \!\rightarrow\! (\sim\! P)]$
Т	Т	Т	Т	Т	Т	F	F	F	F
Т	F	F	Т	Т	Т	F	Т	Т	Т
F	Т	Т	Т	F	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т	Т	Т

(b) U is a contingent statement.

(c) V is a contingent statement.

(d) W is a contingent statement.

- (e) X is a contingent statement.
- (f) $U \wedge V$ is logically equivalent to P.
- (g) $W \longleftrightarrow X$ is a tautology.
- (h) $U \longleftrightarrow W$ is logically equivalent to $\sim (P \longleftrightarrow Q)$.

3. Answer.

Let P, Q be statements. The statements $P \longleftrightarrow (\sim Q), (\sim P) \longleftrightarrow Q, (P \lor Q) \land [\sim (P \land Q)], [P \land (\sim Q)] \lor [(\sim P) \land Q]$ are logically equivalent to each other.

Here are two truth tables which display the truth values of P, Q and the statements $P \leftrightarrow (\sim Q), (\sim P) \leftrightarrow Q, (P \lor Q) \land [\sim (P \land Q)], [P \land (\sim Q)] \lor [(\sim P) \land Q]$:

P	Q	$\sim P$	$\sim Q$	$P \leftrightarrow (\sim Q)$	$\big \ (\sim P) \leftrightarrow Q$	$P \lor Q$	$P \land Q$	$\sim (P \land Q)$	$ (P \lor Q) \land [\sim (P \land Q)]$
Т	Т	F	F	F	F	Т	Т	F	F
Т	F	F	Т	Т	Т	T	F	Т	Т
F	Т	Т	F	Т	Т	T	F	Т	Т
F	F	Т	Т	F	F	F	F	Т	F
P	Q	$\sim P$	$\sim Q$	$P \land (\sim Q)$	$(\sim P) \land Q$	$[P \land (\sim Q)]$	$Q)] \lor [(\sim$	$(P) \land Q]$	$P \leftrightarrow (\sim Q)$
Т	Т	F	F	F	F		F		F
Т	F	F	Т	Т	F	Т			Т
F	Т	Т	F	F	Т	Т			Т
F	F	Т	Т	F	F	F			F

4. Answer.

Let P, Q, R, S be statements, and denote the statements $(P \longrightarrow Q) \longrightarrow (R \longrightarrow S), [P \longrightarrow (Q \longrightarrow R)] \longrightarrow S$ by U, V.

Suppose the truth value of U is F .

Then the truth value of $P \longrightarrow Q$ is T and the truth value of $R \longrightarrow S$ is F.

Since the truth value of $R \longrightarrow S$ is F, the truth value of R is T and the truth value of S is F.

Since the truth value of R is T, the truth value of $Q \longrightarrow R$ is T.

Since the truth value of $Q \longrightarrow R$ is T, the truth value of $P \longrightarrow (Q \longrightarrow R)$ is T.

Recall that the truth value of S is F. Then the truth value of V is F.

Since the truth values of U, V are both F, the truth value of $V \longrightarrow U$ is T.

5. Answer.

We verify that the truth value of $[(P \lor Q) \longrightarrow (Q \land R)] \longrightarrow (P \longrightarrow R)$ is T irrespective of the respective truth values of P, Q, R:

• Suppose it happened that the truth value $[(P \lor Q) \longrightarrow (Q \land R)] \longrightarrow (P \longrightarrow R)$ were F for some specific truth values of P, Q, R respectively.

Then for the same truth values of P, Q, R, it would happen that the truth value of $(P \lor Q) \longrightarrow (Q \land R)$ was T and the truth value of $P \longrightarrow R$ was F.

Since the truth value of $P \longrightarrow R$ was F, the truth value of P was T and the truth value of R was F.

Since the truth value of R was F, the truth value of $Q \wedge R$ was F.

Since the truth value of P was $\mathsf{T},$ the truth value of $P \lor Q$ was $\mathsf{T}.$

Then the truth value of $(P \lor Q) \longrightarrow (Q \land R)$ would be F. This is impossible.