MATH1050 Assignment 12 (Answers and selected solutions)

1. Answer.

- (a) Yes.
- (b) No.
- (c) No.
- (d) Yes.

2. Answer.

(a) (I) For any (II) $(p,p) \in J$ (III) Pick any (IV) There exist some (V) such that p = (s, t)(VI) and $t \leq t$ (VII) $(p,p) \in J$ (I) For any $p, q \in \mathbb{N}^2$, if $(p,q) \in J$ and $(q,p) \in J$ (b) (II) p = q(III) Suppose $(p,q) \in J$ and $(q,p) \in J$ (IV) and (V) or (VI) $(q, p) \in J$ (VII) $u \leq s$ (VIII) $u \leq s$ (IX) $t \leq v$ (X) $v \leq t$ (XI) and (XII) t = v(XIII) p = q(I) For any $p, q, r \in \mathbb{N}^2$, if $(p, q) \in J$ and $(q, r) \in J$ (c) (II) $(p,r) \in J$ (III) Suppose $(p,q) \in J$ and $(q,r) \in J$. (IV) Suppose p = q(V) $(p,r) = (p,q) \in J$ (VI) $p \neq q$ and $q \neq r$ (VII) There exist some $s, t, u, v, w, x \in \mathbb{N}$ such that p = (s, t), q = (u, v) and r = (w, x)(VIII) $(p,q) \in J$ (IX) false (\mathbf{X}) or (XI) and (XII) $(q,r) \in J$ (XIII) u < w or (u = w and v < x)(XIV) s < u < w(XV) Suppose s < u and (u = w and v < x)(XVI) Suppose (s = u and t < v) and u < w(XVII) Suppose (s = u and t < v) and (u = w and v < x)(XVIII) $(p,r) \in J$

(d) (I) $(p,q) \in J$ or $(q,p) \in J$ (II) Pick any $p, q \in \mathbb{N}^2$ (III) s < u or $(s = u \text{ and } t \leq v)$ (IV) Suppose s = u(V) or (VI) Suppose $t \leq v$ (VII) Suppose $v \leq t$ (VIII) $(q, p) \in J$ (IX) Suppose s > u(X) u < s or $(u = s \text{ and } v \leq t)$ (XI) $(q, p) \in J$ (XII) $(p,q) \in J$ or $(q,p) \in J$ (e) (I) for any (II) \mathbb{N}^2 (III) B is non-empty (IV) B has a least element with respect to T(V) Let B be a non-empty subset of \mathbb{N}^2 (VI) There exists some $u, v \in \mathbb{N}$ (VII) for some (VIII) subset of N(IX) $u \in B'$ (X) least element (XI) there exists some (XII) such that $(s, w) \in B$ (XIII) B'' is non-empty (XIV) the Well-ordering Principle for Integers (XV) for any $q \in B$, $(s, t) \leq_{\text{lex}} q$ (XVI) $q \in B$ (XVII) s is a least element of B'(XVIII) or (XIX) or (XX) and (XXI) Suppose s = x(XXII) $y \in B''$ (XXIII) $t \leq y$ (XXIV) $(s,t) \leq_{\text{lex}} (x,y) = q$

3. Answer.

- (a) —
- (b) No.
- (c) No.

4. Answer.

- (a) —
- (b) Yes.
- (c) No.
- (d) No.
- (e) Neither.

5. Answer.

- (a) —
- (b) —
- (c) Yes.
- (d) No.

6. Answer.

- (a) —
- (b) —
- (c) —
- (d) No.

7. Answer.

- (a) —
- (b) Yes.
- (c) —

8. Answer.

- (a) An injective function from A to B is $f: A \longrightarrow B$ defined by $f(x) = \frac{x}{2} + \frac{5}{2}$ for any $x \in A$.
- (b) An injective function from B to A is $g: B \longrightarrow A$ defined by $g(y) = \frac{y}{4}$ for any $y \in B$.

9. Solution.

Let $A = [1010, 1050] \setminus \{1030\}$ and $B = (2040, 2050) \cup ([2060, +\infty) \cap \mathbb{Q}).$

(a) Define the function $f: A \longrightarrow B$ by $f(x) = \frac{x}{1050} + 2040$ for any $x \in A$.

Note that $\frac{x}{1050} + 2040 \in B$ for any $x \in A$. Then f is well-defined as a function. We verify that f is injective:

* Pick any $x, w \in A$. Suppose f(x) = f(w). Then $\frac{x}{1050} + 2040 = \frac{w}{1050} + 2040$. Therefore $\frac{x}{1050} = \frac{w}{1050}$. Hence x = w. Therefore $A \leq B$.

(b) • Define the function $g: B \longrightarrow A$ by $g(y) = \frac{1}{y} + 1010$ for any $y \in B$.

Note that $\frac{1}{y} + 1010 \in A_6$ for any $y \in B_6$. Then g is well-defined as a function. We verify that g is injective:

* Pick any $y, z \in B$. Suppose g(y) = g(z). Then $\frac{1}{y} + 1010 = \frac{1}{z} + 1010$. Therefore $\frac{1}{y} = \frac{1}{z}$. Hence y = z. Therefore $B \leq A$.

• By Schröder-Bernstein Theorem, since $A \lesssim B$ and $B \lesssim A$, we have $A \sim B$.

10. **Answer.**

- (a) —
- (b) Yes.
- (c) No.
- (d) Yes.

11. Answer.

These sets are of cardinality equal to $\mathsf{N}\colon$

 $\mathsf{N},\, \mathbb{Q},\, \mathsf{N}^3,\, \mathsf{Map}(\{0,1\},\mathsf{N}).$

These sets are of cardinality equal to $\mathfrak{P}(\mathbb{N})$:

 $\mathsf{IR} \backslash \mathbb{Q}, \, [0,1], \, \mathfrak{P}(\mathsf{N}), \, \mathsf{Map}(\mathsf{N}, \{0,1\}), \, \mathbb{C}, \, \mathsf{N} \times \mathsf{IR}.$

These sets are of cardinality equal to $\mathfrak{P}(\mathfrak{P}(\mathsf{N}))\text{:}$

 $\mathfrak{P}(\mathrm{I\!R}),\, \mathsf{Map}(\mathrm{I\!R},\{0,1\}).$