MATH1050 Assignment 12

1. You are not required to justify your answer in this question.

Denote by A the set of all non-zero polynomial functions on \mathbb{R} .

Define
$$G = \left\{ (f,g) \mid f,g \in A \text{ and } \lim_{x \to +\infty} \frac{f(x)}{g(x)} \text{ exists in } \mathbb{R} \right\}$$
. Define $R = (A, A, G)$.

Note that R is a relation in A with graph G.

For each statement below, decide whether it is true or false:

- (a) R is reflexive.
- (b) R is symmetric.
- (c) R is anti-symmetric.
- (d) R is transitive.

2. Define
$$J = \left\{ ((s,t), (u,v)) \mid s, t, u, v \in \mathbb{N}, \text{ and} \\ [s < u \text{ or } (s = u \text{ and } t \le v)] \right\}$$
, and $T = (\mathbb{N}^2, \mathbb{N}^2, J)$.

Note that $J \subset \mathbb{N}^2 \times \mathbb{N}^2$. Hence T is a relation in \mathbb{N}^2 with graph J.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (A1), a proof for the statement (A2), a proof for the statement (A3), a proof for the statement (A4), and a proof for the statement (A5). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

- (a) Here we prove the statement (A1):
 - (A1) T is reflexive.

We verify the statement '___(I) $p \in \mathbb{N}^2$, (II) '. <u>(III)</u> $p \in \mathbb{N}^2$. (IV) $s, t \in \mathbb{N}$ (V) . We have s = s (VI) . Then by the definition of J, we have (VI) . It follows that T is reflexive.

- (b) Here we prove the statement (A2):
 - (A2) T is anti-symmetric.

We verify the statement '_____ (I) then ____ (II) . Pick any $p, q \in \mathbb{N}^2$. (III) There exist some $s, t, u, v \in \mathbb{N}$ such that p = (s, t) and q = (u, v). Since $(p,q) \in J$, we have (s < u or (s = u and t < v)). Then $s \leq u$ (IV) (s < u (V) $t \leq v$), by the Law of Distribution for conjunction and disjunction. In particular, $s \leq u$. Since (VI) , we also deduce (VII) by modifying the argument above. Then $s \leq u$ and (VIII) . Therefore s = u. Now recall that $(s < u \text{ or } (s = u \text{ and } t \leq v))$. Then s = u and (IX) . In particular, $t \leq v$. Similarly, we deduce that (X) Then $t \le v$ (XI) $v \le t$. Therefore (XII) Then s = u and t = v. Hence (XIII) It follows that T is anti-symmetric.

(c) Here we prove the statement (A3):

We verify the statement ' (I) then (II) Pick any $p, q, r \in \mathbb{N}^2$. (III) * (Case 1.) (IV) . Then $(p,r) = (q,r) \in J$. * (Case 2.) Suppose q = r. Then (V) . * (Case 3.) Suppose (VI) . (VII) Since (VIII) , we have s < u or $(s = u \text{ and } t \le v)$. Since $p \neq q$, 's = u and t = v' is (IX) Then we have s < u (X) (s = u (XI) t < v). (XII) _____, we can also deduce that ______(XIII) ______, by modifying the argument Since above. Now we have [s < u or (s = u and t < v)] and [u < w or (u = w and v < x)]. \star (Case 3a.) Suppose s < u and u < w. Then (XIV) . Therefore s < w or (s = w and t < x). * (Case 3b.) (XV) . Then s < u = w. Therefore s < w or (s = w and t < x). \star (Case 3c.) (XVI) . Then s = u < w.Therefore s < w or (s = w and t < x). * (Case 3d.) (XVII) . Then s = u = w and t < v < x. Therefore s < w or (s = w and t < x). Then in any case s < w or (s = w and t < x). Hence (XVIII) Hence in any case, $(p, r) \in J$. It follows that T is transitive.

- (d) Here we prove the statement (A4):
 - (A4) T is strongly connected.

We verify the statement 'For any $p, q \in \mathbb{N}^2$, ______' (I) ____'. ________' (II) _______'. There exist some $s, t, u, v \in \mathbb{N}$ such that p = (s, t) and q = (u, v). We have s < u or s = u or s > u. * (Case 1.) Suppose s < u. Then ________ (III) _______. Therefore $(p, q) \in J$. * (Case 2.) _________ (VI) ______. We have $t \le v$ _________ $V \ge t$. * (Case 2a.) __________. (VI) ______. Then s = u and $t \le v$. Therefore s < u or (s = u and $t \le v$. Therefore s < u or (s = u and $t \le v$. Therefore u < s or (u = s and $v \le t$. Therefore u < s or (u = s and $v \le t$). Hence ________. * (Case 3.) _______. Then _______. Then _______. Therefore ________. (XI) ______.

(e) Here we prove the statement (A5):

(A5) T is a well-ordered relation in \mathbb{N}^2 .

According to the previous parts, T is a total ordering. From now on, we write $p \leq_{\text{lex}} q$ exactly when $(p,q) \in J$. We verify the statement '_____ subset B of _____ , if _____ (III) ____ , then _____ (IV) . Take some $p \in B$. (VI) (V)such that p = (u, v). • Define the set $B' = \{x \in \mathbb{N} : (x, y) \in B$ (VII) $y \in \mathbb{N}\}.$ B' is a (VIII) according to its definition. By definition of B', (IX) . Then B' is non-empty. By the Well-ordering Principle for Integers , B' has a (X) . Denote it by s. • Define $B'' = \{y \in \mathbb{N} : (s, y) \in B\}.$ B'' is a subset of N according to its definition. Recall that $s \in B'$. Then by definition of B', (XI) $w \in \mathbb{N}$ (XII) . By definition of $B'', w \in B''$. Therefore (XIII) By (XIV), B'' has a least element. Denote it by t. • We verify that (s, t) is the least element of B with respect to T. According to the definition for the notion of least element, we verify the statement (XV)Pick any $q \in B$. By definition, $q \in \mathbb{N}^2$. Then there exist some $x, y \in \mathbb{N}$ such that q = (x, y). By definition of B', (XVI) , we have $x \in B'$. Then, since (XVII), we have $s \le x$. Note that s < x (XVIII) s = x. * (Case 1.) Suppose s < x. Then s < x (XIX) (s = x (XX) $t \le y$). Therefore $(s, t) \leq_{\text{lex}} (x, y) = q$. * (Case 2.) (XXI) . Then, by definition of B'', since $(s, y) = (x, y) \in B$, we have (XXII) . Now, since t is a least element of B'', we have (XXIII) Then s = x and $t \leq y$. Therefore s < x or (s = x and $t \leq y)$. Then (XXIV) Hence, in any case, $(s, t) <_{\text{lex}} q$. It follows that T is a well-order relation in \mathbb{N}^2 .

3. Define the relation $R = (\mathbb{R}, \mathbb{R}, P)$ in \mathbb{R} by $P = \{(x, y) \in \mathbb{R}^2 : \text{There exists some } n \in \mathbb{N} \text{ such that } y = 2^n x\}.$

- (a) Verify that R is a partial ordering in \mathbb{R} .
- (b) Is R a total ordering in \mathbb{R} ? Why?
- (c) Is R an equivalence relation in \mathbb{R} ? Why?

4. Let $R = (\mathbb{R}, \mathbb{R}, G)$ be the relation in \mathbb{R} defined by $G = \{(x, y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R} \text{ and } |y - x| \le 1\}$.

(a) Verify that R is reflexive.

- (b) Is R symmetric? Justify your answer.
- (c) Is R anti-symmetric? Justify your answer.
- (d) Is R transitive? Justify your answer.
- (e) Is R an equivalence relation in \mathbb{R} ? Is R a partial ordering in \mathbb{R} ? Or neither? Why?

5. Let $A = \{ \varphi \mid \varphi : \mathbb{N} \longrightarrow \mathbb{R} \text{ is a function and } \varphi(0) = 0. \}$. Define the relation R = (A, A, H) in A by $H = \{ (\varphi, \psi) \in A^2 : \varphi(n+1) - \varphi(n) \le \psi(n+1) - \psi(n) \text{ for any } n \in \mathbb{N} \}.$

- (a) Verify that R is reflexive.
- (b) Verify that R is transitive.
- (c) Is R a partial ordering in A? Justify your answer.
- (d) Is R an equivalence relation in A? Justify your answer.

6. Define the relation $R = (\mathbb{Z}, \mathbb{Z}, G)$ in \mathbb{Z} by $G = \{(x, y) \in \mathbb{Z}^2 : \text{There exist some } m, n \in \mathbb{N} \text{ such that } y = mx + n.\}$.

- (a) Verify that R is reflexive.
- (b) Verify that R is transitive.
- (c) Verify that R is not a partial ordering in \mathbb{Z} .
- (d) Is R is an equivalence relation in \mathbb{Z} ? Justify your answer.
- 7. Let $I = (0, +\infty), J = [-1, 1].$
 - (a) Prove that $\frac{1}{a+1} \in J$ for any $a \in I$.
 - (b) Define the function $g: I \longrightarrow J$ by $g(x) = \frac{1}{x+1}$ for any $x \in I$. Is g injective? Justify your answer.
 - (c) Apply the Schröder-Bernstein Theorem to prove that $I \sim J$.
- 8. Let $A = [-1, 1], B = (-4, -2] \cup [2, 4).$
 - (a) Name one injective function from A to B, if there is any at all, and verify that it is indeed an injective function from A to B.
 - (b) Apply the Schröder-Bernstein Theorem, or otherwise, to prove that A is of cardinality equal to B.

9. \diamond Let $A = [1010, 1050] \setminus \{1030\}$ and $B = (2040, 2050) \cup ([2060, +\infty) \cap \mathbb{Q}).$

- (a) Name one injective function from A to B, if there is any at all, and verify that it is indeed an injective function from A to B.
- (b) Apply the Schröder-Bernstein Theorem to prove that $A \sim B$.

10. Let
$$D = \{\zeta \in \mathbb{C} : |\zeta| \le 1\}$$
. Define $F = \left\{ (z, w) \mid z \in \mathbb{C} \text{ and } w \in D \text{ and } w = \frac{iz|z|}{1+|z|+|z|^2} \right\}$. Note that $F \subset \mathbb{C} \times D$. Define $f = (\mathbb{C}, D, F)$.

- (a) \diamond Verify that f is a function.
- (b) \diamond Is f injective? Justify your answer.
- (c) Is f surjective? Justify your answer.
- (d) Is it true that $D \sim \mathbb{C}$? Justify your answer. **Remark.** Where appropriate and relevant, you may apply the Schröder-Bernstein Theorem in your argument.
- 11. You are not required to justify your answer in this question.

Consider the sets below. Classify them according to whether such a set is of cardinality equal to \mathbb{N} , or whether it is of cardinality equal to $\mathfrak{P}(\mathbb{N})$, or whether it is of cardinality equal to $\mathfrak{P}(\mathfrak{P}(\mathbb{N}))$.

N,	$\mathbb{Q},$	$IR \backslash \mathbf{Q},$	$Map(\{0,1\},N),$
\mathbb{N}^3 ,	[0, 1],	$\mathfrak{P}(N),$	$Map(N,\{0,1\}),$
$N \times IR$,	€,	$\mathfrak{P}(\mathbb{R}),$	$Map(\mathbb{R}, \{0, 1\}).$