1. Solution.

- (a) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^4 4x^2$ for any $x \in \mathbb{R}$.
 - i. We verify that f is not injective:
 - Take $x_0 = 0$, $w_0 = 2$. We have $x_0, w_0 \in \mathbb{R}$ and $x_0 \neq w_0$. Also, $f(x_0) = 0 = f(w_0)$.
 - ii. We verify that f is not surjective:
 - Take $y_0 = -5$. Pick any $x \in \mathbb{R}$. We have $f(x) = x^4 - 4x^2 = (x^2 - 2)^2 - 4 \ge -4 > -5$. Then $f(x) \ne -5$. Hence, for any $x \in \mathbb{R}$, $f(x) \ne y_0$.
- (b) Let $x \in (\sqrt{2}, +\infty)$. $x^4 - 4x^2 = (x^2 - 2)^2 - 4 > 0 - 4 = -4$.
- (c) Let $g:(\sqrt{2},+\infty)\longrightarrow (-4,+\infty)$ be the function defined by $g(x)=x^4-4x^2$ for any $x\in(\sqrt{2},+\infty)$.
 - i. Pick any $x, w \in (\sqrt{2}, +\infty)$. Suppose g(x) = g(w). Then $x^4 4x^2 = w^4 4w^2$. Therefore $(x w)(x + w)(x^2 + w^2) = (x^2 w^2)(x^2 + w^2) = 4(x^2 w^2) = 4(x w)(x + w)$. Then $(x w)(x + w)(x^2 + w^2 4) = 0$.

Note that $x \ge \sqrt{2} > 0$ and $w \ge \sqrt{2} > 0$. Then x + w > 0 and $x^2 + w^2 - 4 > 0$.

Then x = w.

It follows that g is injective.

ii. Pick any $y \in (-4, +\infty)$. Note that y + 4 > 0. Then $\sqrt{y+4}$ is well-defined and $2 + \sqrt{4+y} > 2$. Therefore $\sqrt{2 + \sqrt{4+y}}$ is well-defined and $\sqrt{2 + \sqrt{4+y}} > \sqrt{2}$.

Take $x = \sqrt{2 + \sqrt{4 + y}}$. Note that $x \in (\sqrt{2}, +\infty)$.

We have
$$g(x) = x^4 - 4x^2 = (\sqrt{2 + \sqrt{4 + y}})^4 - 4(\sqrt{2 + \sqrt{4 + y}})^2 = (2 + \sqrt{4 + y})^2 - 4(2 + \sqrt{4 + y}) + 4 - 4 = [(2 + \sqrt{4 + y}) - 2]^2 - 4 = (4 + y) - 4 = y.$$

It follows that g is surjective.

iii. Since g is both injective and surjective, g is bijective. Its inverse function $g^{-1}:(-4,+\infty)\longrightarrow (\sqrt{2},+\infty)$ is given by $g^{-1}(y)=\sqrt{2+\sqrt{4+y}}$ for any $y\in (-4,+\infty)$.

Remark. Although f and g have the same 'formula of definition', one is bijective and the other is not. So when talking about a function, be aware of its domain and its range, and don't just look at its 'formula of definition'.

2. Answer.

- (a) $J = (1, +\infty)$.
- (b) $f^{-1}(y) = \frac{1}{4} \left(\ln \left(\frac{y+1}{y-1} \right) \right)^2$ for any $y \in J$.
- 3. (a) Solution.

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = \bar{z}$ for any $z \in \mathbb{C}$.

- Let $z, w \in \mathbb{C}$. Suppose f(z) = f(w). Then $\bar{z} = \bar{w}$. Therefore $z = \bar{\bar{z}} = \bar{w} = w$. It follows that f is injective.
- Let $\zeta \in \mathbb{C}$. Take $z = \bar{\zeta}$. By definition, $z \in \mathbb{C}$. $f(z) = \bar{z} = \bar{\bar{\zeta}} = \zeta$. It follows that f is surjective.

Hence f is bijective.

(b) Answer.

The inverse function $f^{-1}:\mathbb{C}\longrightarrow\mathbb{C}$ of the function f is given by $f^{-1}(z)=\bar{z}$ for any $z\in\mathbb{C}$.

Comment. The conjugate of the conjugate of a complex number is the complex number itself.

4. Solution.

Let $a, b, c, d \in \mathbb{C}$. Suppose $c \neq 0$ and $ad - bc \neq 0$.

(a) Let $z \in \mathbb{C}$.

$$\frac{az+b}{cz+d} - \frac{a}{c} = \frac{c(az+b) - a(cz+d)}{c(cz+d)} = -\frac{ad-bc}{c(cz+d)} \neq 0 \text{ because } ad-bc \neq 0. \text{ Then } \frac{az+b}{cz+d} \neq \frac{a}{c}.$$

- (b) Define the function $f: \mathbb{C}\setminus\{-d/c\} \longrightarrow \mathbb{C}\setminus\{a/c\}$ by $f(z) = \frac{az+b}{cz+d}$ for any $z \in \mathbb{C}\setminus\{-d/c\}$.
 - i. Pick any $z, w \in \mathbb{C} \setminus \{-d/c\}$. Suppose f(z) = f(w). Then $\frac{az+b}{cz+d} = \frac{aw+b}{cw+d}$. Therefore

$$aczw + bd + adz + bcw = (az + b)(cw + d) = (aw + b)(cz + d) = aczw + bd + adw + bcz.$$

Hence (ad - bc)z = (ad - bc)w. Since $ad - bc \neq 0$, we have z = w.

- It follows that f is injective.
- ii. Pick any $\zeta \in \mathbb{C} \setminus \{a/c\}$. Since $\zeta \neq \frac{a}{c}$, we have $-c\zeta + a \neq 0$. Take $z = \frac{d\zeta b}{-c\zeta + a}$. By definition, $z \in \mathbb{C}$.

Moreover,
$$z - \frac{-d}{c} = \frac{d\zeta - b}{-c\zeta + a} + \frac{d}{c} = \frac{c(d\zeta - b) + d(-c\zeta + a)}{c(-c\zeta + a)} = \frac{ad - bc}{c(-c\zeta + a)} \neq 0$$
. Then $z \neq -\frac{d}{c}$. Hence $z \in \mathbb{C} \setminus \{-d/c\}$.

$$f(z) = \frac{a[(d\zeta-b)/(-c\zeta+a)]+b}{c[(d\zeta-b)/(-c\zeta+a)]+d} = \frac{a(d\zeta-b)+b(-c\zeta+a)}{c(d\zeta-b)+d(-c\zeta+a)} = \frac{(ad-bc)\zeta+0}{0\cdot\zeta+(ad-bc)} = \zeta.$$

- It follows that f is surjective.
- iii. The inverse function of f, which is $f^{-1}: \mathbb{C}\setminus\{a/c\} \longrightarrow \mathbb{C}\setminus\{-d/c\}$, is given by $f^{-1}(\zeta) = \frac{d\zeta b}{-c\zeta + a}$ for any $\zeta \in \mathbb{C}\setminus\{a/c\}$.
- 5. Answer.
 - (a) —
 - (b) i.
 - ii. ——
 - iii. Yes.
- 6. Answer.
 - (a) (I) L is a subset of $H \times K$
 - (II) a relation
 - (III) For any $x \in D$
 - (IV) $y \in R$
 - (V) $(x,y) \in G$
 - (VI) For any $x \in D$, for any $y, z \in R$
 - (VII) $(x, y) \in G$ and $(x, z) \in G$
 - (VIII) y = z
 - (IX) D
 - (X) R
 - (XI) G
 - (b) i. (p,q) = (0,0) or (p,q) = (0,1). $(s,t) = (1,\tau)$, provided that $-2 \le \tau < 2$.
 - ii. (p,q)=(1,1) and (s,t)=(2,1). Alternative answer: (p,q)=(1,2) and (s,t)=(2,2).
 - iii. (m, n) = (0, 0). (p, q) = (1, 1) or (p, q) = (1, 2).
- 7. Answer.
 - (I) F is a subset of $A \times B$
 - (II) there exists some $y \in B$
 - (III) Pick any $x \in A$.
 - (IV) 0
 - (V) 4
 - (VI) Define $y = 4 + \sqrt{\frac{16 (x 2)^4}{4}}$
 - (VII) $y \in B$

(VIII)
$$(x-2)^4 + 4 \cdot \left[4 + \sqrt{\frac{16 - (x-2)^4}{4}} - 4\right]^2 = (x-2)^4 + 4 \cdot \frac{16 - (x-2)^4}{4} = 16$$

(IX)
$$(x,y) \in F$$

(X) if
$$(x, y) \in F$$
 and $(x, z) \in F$ then $y = z$

(XI) Pick any
$$x \in A$$
. Pick any $y, z \in B$. Suppose $(x, y) \in F$ and $(x, z) \in F$.

(XII)
$$(x-2)^4 + 4(y-4)^2 = 16$$

(XIII) since
$$(x, z) \in F$$
, we have $(x - 2)^4 + 4(z - 4)^2 = 16$

(XIV)
$$\frac{16 - (x-2)^4}{4}$$

(XV)
$$\sqrt{(y-4)^2} = \sqrt{(z-4)^2} = z - 4$$

(XVI)
$$y = z$$

8. Answer.

(a) (I) Suppose
$$y \in f(S)$$

(II) there exists some
$$x \in S$$
 such that $y = f(x)$

(III)
$$y = f(x) = 2x^4 - 4 \ge 2 \cdot 1^4 - 4 = -2$$

(IV) Since
$$x \leq 2$$

(V) Take
$$x = \sqrt[4]{\frac{y+4}{2}}$$

(VI)
$$x = \sqrt[4]{\frac{y+4}{2}} \ge 1$$

(VII) Since
$$y \le 28$$
, we have $\frac{y+4}{2} \le 16$

(VIII)
$$x = \sqrt[4]{\frac{y+4}{2}} \le 2$$

(IX)
$$f(x) = 2x^4 - 4 = 2\left(\sqrt[4]{\frac{y+4}{2}}\right)^4 - 4 = 2 \cdot \frac{y+4}{2} - 4 = y + 4 - 4 = y$$

$$(X) y \in f(S)$$

(b) (I) Suppose
$$x \in f^{-1}(U)$$

(II) there exists some
$$y \in U$$
 such that $y = f(x)$

(III)
$$y \in U$$

(IV)
$$2x^4 - 4 = f(x) = y \le 4$$

(V) Suppose
$$x \in [-\sqrt{2}, \sqrt{2}]$$

(VI) Define
$$y = f(x)$$

(VII)
$$y = f(x) = 2x^4 - 4 \le 4$$

(VIII)
$$y = f(x) = 2x^4 - 4 \ge -6$$

(X)
$$x \in f^{-1}(U)$$

9. Answer.

(a) (I) Pick any subset
$$U$$
 of B

(II) For any
$$y$$
, if $y \in \in f(S \cap f^{-1}(U))$ then $y \in f(S) \cap U$.

(III) Pick any object
$$y$$

(IV)
$$y \in f(S \cap f^{-1}(U))$$

(V)
$$x \in S \cap f^{-1}(U)$$

(VI)
$$y = f(x)$$

(VII)
$$x \in S$$
 and $x \in f^{-1}(U)$

(VIII)
$$y = f(x)$$

(IX)
$$y \in f(S)$$

- (X) there exists some $z \in U$ such that z = f(x)
- (XI) f(x)
- (XII) U
- (XIII) $y \in f(S)$ and
- (XIV) $y \in f(S) \cap U$
- (XV) Suppose $y \in f(S) \cap U$
- (XVI) $y \in f(S)$ and
- (XVII) $y \in f(S)$
- (XVIII) there exists some $x \in S$ such that y = f(x)
- (XIX) y = f(x)
- (XX) $x \in f^{-1}(U)$
- (XXI) $x \in S \cap f^{-1}(U)$
- (XXII) and y = f(x)
- (XXIII) $y \in f(S \cap f^{-1}(U))$
- (XXIV) $f(S \cap f^{-1}(U)) = f(S) \cap U$
- (b) (I) $A = \{0, 1\}$
 - (II) the function $f:A\longrightarrow B$
 - (III) f(0) = 2
 - (IV) 0
 - $(V) \{2\}$
 - $(VI) \{2\}$
 - $(VII) \{0, 1\}$
 - (VIII) 1
 - (IX) $1 \notin f^{-1}(U) \cap S$
 - (X) $f^{-1}(U \cap f(S)) \not\subset f^{-1}(U) \cap S$