- 1. (a) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^4 4x^2$ for any $x \in \mathbb{R}$.
 - i. Is f injective? Justify your answer.
 - ii. Is f surjective? Justify your answer.
 - (b) Verify that for any $x \in (\sqrt{2}, +\infty), x^4 4x^2 > -4$.

(c) Let $g: (\sqrt{2}, +\infty) \longrightarrow (-4, +\infty)$ be the function defined by $g(x) = x^4 - 4x^2$ for any $x \in (\sqrt{2}, +\infty)$.

- i. Is g injective? Justify your answer.
- ii. Is g surjective? Justify your answer.
- iii. Is g bijective? If yes, also write down the 'formula of definition' for its inverse function.
- 2. You are not required to prove your answers in this question.

The function $f: (0, +\infty) \longrightarrow J$, given by $f(x) = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{e^{\sqrt{x}} - e^{-\sqrt{x}}}$ for any $x \in (0, +\infty)$ is known to be a bijective function from $(0, +\infty)$ to the set J.

- (a) Express the set J explicitly as an interval.
- (b) Write down the explicit 'formula of definition' for the inverse function f^{-1} of the function f.
- 3. Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = \overline{z}$ for any $z \in \mathbb{C}$.
 - (a) Verify that f is bijective.
 - (b) Write down the 'formula of definition' of the inverse function of f.
- 4. Let $a, b, c, d \in \mathbb{C}$. Suppose $c \neq 0$ and $ad bc \neq 0$.
 - (a) Prove that for any $z \in \mathbb{C}$, $\frac{az+b}{cz+d} \neq \frac{a}{c}$.

(b) Define the function $f: \mathbb{C} \setminus \{-d/c\} \longrightarrow \mathbb{C} \setminus \{a/c\}$ by $f(z) = \frac{az+b}{cz+d}$ for any $z \in \mathbb{C} \setminus \{-d/c\}$.

- i. Verify that f is injective.
- ii. Verify that f is surjective.
- iii. Write down the 'formula of definition' of the inverse function of f.
- 5. (a) \diamond Let $n \in \mathbb{N} \setminus \{0\}$, and $a \in \mathbb{C} \setminus \{0\}$. Define the function $\mu : \mathbb{C} \longrightarrow \mathbb{C}$ by $\mu(z) = az^n$ for any $z \in \mathbb{C}$. Prove that μ is bijective iff n = 1.
 - (b) Let $h: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by

$$h(z) = \begin{cases} iz & \text{if} \quad |z| \in \mathbb{Q} \\ \frac{3i}{2\overline{z}} & \text{if} \quad |z| \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- i. Prove the statement (\sharp) :
 - (\sharp) For any $\zeta \in \mathbb{C}$, if $|\zeta|$ is irrational then $|h(\zeta)|$ is irrational.
- ii. Prove that $(h \circ h)(z) = -z$ for any $z \in \mathbb{C}$.

iii.^{\diamond} Is h bijective? Justify your answer. (*Hint.* Make good use of the result in the previous part.)

- 6. (a) Fill in the blanks in the passage below so as to give the respective definitions for the notions of *relation* and *function*:
 - Let H, K, L be sets. We say that (H, K, L) is a relation if (I)
 - Let D, R, G be sets. We say that (D, R, G) is a function if (D, R, G) is __(II) __ and the statements (E), (U) below hold:
 - (E) (III) , there exists some (IV) such that (V) .
 - (U) (VI) , if (VII) then (VIII) .

For such a function, we say that (IX) is its domain, (X) is its range, and (XI) is its graph.

- (b) You are not required to justify your answers in this question. In each part, you are only required to give one correct answer, although there are different correct answers.
 - i. Let A = (-1, 1], B = [-2, 2), $G = \{(x, x) \mid x \leq 0\}$, $H = \{(x, x + 1) \mid x \geq 0\}$ and $F = (A \times B) \cap (G \cup H)$. Name some appropriate $(p, q), (s, t) \in A \times B$, if such exist, for which the ordered triple $(A, B, (F \setminus \{(p, q)\}) \cup \{(s, t)\})$ is a function from A to B.
 - ii. Let $A = [0,2], G = \{(x,x^2) \mid 0 \le x \le 1\}, H = \{(x,3-x) \mid 1 \le x < 2\}$ and $F = A^2 \cap (G \cup H)$. Name some appropriate $(p,q), (s,t) \in A^2$, if such exist, for which the ordered triple $(A, A, (F \setminus \{(p,q)\}) \cup \{(s,t)\})$ is an injective function from A to A.
 - iii. Let $A = [0, +\infty)$ and E, F be the subsets of \mathbb{R}^2 defined respectively by $E = \{(x, x^{-1}) \mid 0 < x \leq 1\}, F = \{(x, 2x^{-2}) \mid x \geq 1\}.$ Name some appropriate $(m, n), (p, q) \in A^2$, if such exist, for which the ordered triple $(A, A, (E \cup F \cup \{(m, n)\}) \setminus \{(p, q)\})$ is a surjective function from A to A.
- 7. Let A = [0,4], B = [4,6], and $F = \{(x,y) \mid x \in A \text{ and } y \in B \text{ and } (x-2)^4 + 4(y-4)^2 = 16\}$. Define f = (A, B, F). Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (A). (The 'underline' for each blank bears no definite relation with the length of the

Here we prove the statement (A):

answer for that blank.)

(A) f is a function from A to B with graph F.

By definition,(I) . Then f is a relation from A to B with graph F . We verify the statement 'for any $x \in A$, (II) such that $(x, y) \in F$ ':
• (III)
By definition, $0 \le x \le 4$. Then $-2 \le x - 2 \le 2$. Therefore $0 \le (x - 2)^4 \le 16$.
Hence $(IV) \leq \frac{16 - (x - 2)^4}{4} \leq (V)$.
(VI) . By definition, $4 \le y \le 6$. Then (VII) .
Also by definition, $(x - 2)^4 + 4(y - 4)^2 =$ (VIII).
Hence (IX) .
We verify the statement 'for any $x \in A$, for any $y, z \in B$, (X)':
• (XI)
Since $(x, y) \in F$, we have (XII)
Also, (XIII)
Then $(y-4)^2 = $ (XIV)= $(z-4)^2$.
Since $y, z \in B$, we have $y - 4 \ge 0$ and $z - 4 \ge 0$.
Then $y - 4 = $ (XV) .
Therefore (XVI) .
It follows that f is a function.

8. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = 2x^4 - 4$ for any $x \in \mathbb{R}$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (B) and a proof for the statement (C). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

- (a) Here we prove the statement (B):
 - (B) f([1,2]) = [-2,28].

Write S = [1, 2].• [We want to verify the statement (†): 'for any y, if $y \in f(S)$ then $y \in [-2, 28]$.'] Pick any y. (I) . Then by the definition of f(S), (II) For the same x, since $x \in S$, we have $1 \le x \le 2$. Since $x \ge 1$, we have (III) . (IV) we have $y = f(x) = 2x^4 - 4 \le 2 \cdot 2^4 - 4 = 28$. Therefore $-2 \le y \le 28$. Hence $y \in [-2, 28]$. • [We want to verify the statement (‡): 'for any y, if $y \in [-2, 28]$ then $y \in f(S)$.'] Pick any y. Suppose $y \in [-2, 28]$. Then $-2 \le y \le 28$. [We want to verify that for this y, there exists some $x \in S$ such that y = f(x).] (V) . We verify that $x \in S$: * Since $y \ge -2$, we have $\frac{y+4}{2} \ge 1$. Then (VI). (VII). Then (VIII) Therefore $1 \le x \le 2$. Hence $x \in [1, 2] = S$. For the same x, we have (IX) . Then, for the same x, y, we have $x \in S$ and y = f(x). Hence by the definition of f(S), (X) It follows that f(S) = [-2, 28]. (b) Here we prove the statement (C): (C) $f^{-1}([-6,4]) = [-\sqrt{2},\sqrt{2}].$ Write U = [-6, 4]. • [We want to verify the statement (†): 'for any x, if $x \in f^{-1}(U)$ then $x \in [-\sqrt{2}, \sqrt{2}]$.'] Pick any x. (I) . Then by the definition of $f^{-1}(U)$, (II) For the same y, since (III) , we have $-6 \le y \le 4$. Since $y \ge -6$, we have $2x^4 - 4 = f(x) = y \ge -6$. Then $x^4 \ge -1$. (This provides no information other than re-iterating ' $x \in \mathbb{R}$ '.) Since $y \leq 4$, we have _____ (IV) _____. Then $x^4 \leq 4$. Since $x \in \mathbb{R}$, we have $-\sqrt{2} \leq x \leq \sqrt{2}$. Then $x \in [-\sqrt{2}, \sqrt{2}].$ • [We want to verify the statement (‡): 'for any x, if $x \in [-\sqrt{2}, \sqrt{2}]$ then $x \in f^{-1}(U)$.'] Pick any x. (V) . Then $-\sqrt{2} \le x \le \sqrt{2}$. [We want to verify that for this x, there exists some $y \in U$ such that y = f(x).] (VI) . We verify that $y \in U$: * Since $-\sqrt{2} \le x \le \sqrt{2}$, we have $x^4 \le 4$. Then (VII) Since $x \in \mathbb{R}$, we have $x^4 \ge 0 \ge -1$. Then (VIII) . Therefore $-6 \le y \le 4$. Hence $y \in [-6, 4] = U$. Then, for the same x, y, we have y = f(x) (IX) $y \in U$. Hence by the definition of $f^{-1}(U)$, (\mathbf{X}) It follows that $f^{-1}(U) = [-\sqrt{2}, \sqrt{2}].$

9. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (K) and a dis-proof against the statement (L). (*The 'underline' for each blank*

bears no definite relation with the length of the answer for that blank.)

- (a) Consider the statement (K):
 - (K) Suppose A, B are sets, and $f : A \longrightarrow B$ is a function. Then for any subset S of A, for any subset U of B, $f(S \cap f^{-1}(U)) = f(S) \cap U.$

We now give a proof for the statement (K).

Suppose A, B are sets, and $f: A \longrightarrow B$ is a function. Pick any subset S of A . (I).
• [We verify the statement (†): ' (II) ']
$\begin{array}{c c} (III) & . & Suppose & (IV) \\ \hline (V) & such that \\ \hline (VI) & . \end{array}$. Then by the definition of image set, there exists some
We have $x \in S \cap f^{-1}(U)$. Then by the definition of intersection, we have(VII)(*)
In particular, $x \in S$. We have $x \in S$ and(VIII) Then, by the definition of image set, we have(IX)(**)
By (*), we also have $x \in f^{-1}(U)$. Then, by the definition of pre-image set,(X) Now $y = (XI) = z \in (XII)$ (* * *)
Now by $(**)$, $(***)$, we have (XIII) $y \in U$. Hence, by the definition of intersection, we have (XIV)
• [We verify the statement (†): 'For any y, if $y \in f(S) \cap U$ then $y \in f(S \cap f^{-1}(U))$ '.]
Pick any object y . (XV) . Then, by the definition of intersection, (XVI) $y \in U$.
In particular, (XVII) . Then, by the definition of image set, (XVIII) . $((\star)$
For the same y , we have(XIX) and $y \in U$. Then, by the definition of pre-image set, we have(XX)(**)
By (\star) , $(\star\star)$, we have $x \in S$ and $x \in f^{-1}(U)$. Hence, by the definition of intersection, we have (XXI) .
Now we have $x \in S \cap f^{-1}(U)$ (XXII) . Therefore, by the definition of image set, we have (XXIII) .
It follows that(XXIV)

- (b) Consider the statement (L):
 - (L) Suppose A, B are sets, and $f : A \longrightarrow B$ is a function. Then for any subset S of A, for any subset U of B, $f^{-1}(U \cap f(S)) \subset f^{-1}(U) \cap S.$

We now give a dis-proof against the statement (L).