1. (a) Answer.

There exist some set A, some functions $f, g: A \longrightarrow A$ such that $g \circ f \neq f \circ g$ as functions.

(b) Answer.

i. For any
$$x \in \mathbb{R}$$
, $(g \circ f)(x) = -\frac{1}{1+x^2}$, $(f \circ g)(x) = \frac{(x-1)^2}{1+(x-1)^2}$.

ii. One of the correct choices of x_0 is 0.

Justification: Note that $(g \circ f)(x_0) = -1$, $(f \circ g)(x_0) = \frac{1}{2}$. Then $(g \circ f)(x_0) \neq (f \circ g)(x_0)$.

iii. There exists some $x_0 \in \mathbb{R}$, namely, $x_0 = 0$, such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence it is not true that $g \circ f = f \circ g$ as functions.

(c) Solution.

Let $A = \{0, 1\}.$

Define $f, g: A \longrightarrow A$ by f(0) = f(1) = 0, g(0) = g(1) = 1. By definition, $g \circ f: A \longrightarrow A$ is given by $(g \circ f)(0) = g(f(0)) = g(0) = 1$, $(g \circ f)(1) = g(f(1)) = g(0) = 1$. $f \circ g: A \longrightarrow A$ is given by $(f \circ g)(0) = f(g(0)) = f(1) = 0$, $(f \circ g)(1) = f(g(1)) = f(1) = 0$. Take $x_0 = 0$. We have $(g \circ f)(x_0) = 1$ and $(f \circ g)(x_0) = 0$. Then $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Therefore $g \circ f \neq f \circ g$ as functions.

Remark. Let A be a set. (This set is fixed in our subsequent discussion.) Suppose $f, g : A \longrightarrow A$ are two functions from the set A to A itself.

- When we want to verify that $g \circ f$, $f \circ g$ are the same function from A to A, we have to verify that for any $x \in A$, $(g \circ f)(x) = (f \circ g)(x)$.
- To verify that $g \circ f$, $f \circ g$ are not the same function from A to A, we check that there exists some $x_0 \in A$ such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence we have to name an appropriate x_0 and show that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$.

2. Answer.

(a) (I) Pick any

Alternative answer. Let Alternative answer. Suppose Alternative answer. Assume Alternative answer. Take any

(II)
$$x = (y+1)^{\frac{3}{5}}$$

(III) $f(x) = x^{\frac{5}{3}} - 1 = \left[(y+1)^{\frac{3}{5}} \right]^{\frac{5}{3}} - 1 = (y+1) - 1 = y$

(IV) f is surjective.

(b) (I) $x, w \in \mathbb{R}$

(II) Suppose Alternative answer. Assume (III) f(x) + 1 = f(w) + 1(IV) $(w^{\frac{5}{3}})^{\frac{3}{5}} = w$ (V) f is injective

3. Answer.

(a)

(I) Take
Alternative answer. Let
Alternative answer. Define
Alternative answer. Pick
Alternative answer. Suppose
Alternative answer. Assume

(II) for any $x \in \mathbb{R}$ (III) Suppose Alternative answer. Assume (IV) there existed some $x_0 \in \mathbb{R}$ such that $f(x_0) = y_0$. (V) 0 (VI) $\left(x_0 - \frac{1}{2}\right)^2 + \frac{3}{4} \ge 0 + \frac{3}{4}$ (VII) f is not surjective. (I) $w_0 = 2$. (II) $x_0 \ne w_0$. (III) $f(w_0) = \frac{2}{2^2 + 1} = \frac{2}{5}$ (IV) $f(w_0)$ (V) f is not injective

4. Answer.

(b)

(a) (I) for any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $\zeta = f(z)$ (II) Pick any $\zeta \in \mathbb{C}$.

(III) there exists some $\theta \in \mathbb{R}$

$$\begin{aligned} \text{(IV) Take } z &= \sqrt[5]{|\zeta|} \cdot \left(\cos\left(\frac{\theta}{5}\right) + i\sin\left(\frac{\theta}{5}\right) \right) \\ \text{(V) } \left[\sqrt[5]{|\zeta|} \cdot \left(\cos\left(\frac{\theta}{5}\right) + i\sin\left(\frac{\theta}{5}\right) \right) \right]^5 &= \left(\sqrt[5]{|\zeta|}\right)^5 \cdot \left(\cos\left(5 \cdot \frac{\theta}{5}\right) + i\sin\left(5 \cdot \frac{\theta}{5}\right) \right) = |\zeta| (\cos(\theta) + i\sin(\theta)) = \zeta \\ \text{(VI) } f \text{ is surjective} \end{aligned}$$

(b) (I) there exist some $z_0, w_0 \in \mathbb{C}$ such that $f(z_0) = f(w_0)$ and $z_0 \neq w_0$

(II) Take $z_0 = 1$, $w_0 = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$.

 ${\bf Remark.} \quad {\rm There \ are \ many \ alternative \ answers.}$

(III)
$$z_0 \neq w_0$$

(IV) $f(z_0) = z_0^5 = 1^5 = 1$
(V) $f(w_0) = w_0^5 = \cos\left(5 \cdot \frac{2\pi}{5}\right) + i\sin\left(5 \cdot \frac{2\pi}{5}\right) = \cos(2\pi) + i\sin(2\pi) = 1$
(VI) f is not injective

5. (a) **Answer.**

(I) Let C be a set (II) $C \longrightarrow C$ (III) $id_C(x) = x$ for any $x \in C$

(b) Answer.

(I) Suppose f is injective or f is surjective. (II) $x \in A$ (III) f(x)(IV) $(f \circ f)(x)$ (V) the definition of injectivity (VI) $f(x) = x = id_A(x)$ (VII) Suppose f is surjective. (VIII) Pick any (IX) there exists some $u \in A$ such that x = f(u)(X) $(f \circ f)(u)$

$$\begin{array}{l} ({\rm XI}) \ (f \circ f)(u) = f(u) \\ ({\rm XII}) \ f = {\rm id}_A \end{array}$$
 (c) -----

6. (a) i. *Hint.* Obtain the inequality $\frac{1}{2} \ge \frac{|p|}{b} + \frac{|q|}{b^2} + \frac{|r|}{b^3} - \cdots + (\star).$

Then apply the Triangle Inequality and the inequality (\star) to deduce $f(b) \ge \frac{b^3}{2}$. ii. ——

(b) *Hint.* For each $\gamma \in \mathbb{R}$, apply the result in the previous to the function $f_{\gamma} : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f_{\gamma}(x) = \frac{g(x) - \gamma}{A}$ for any $x \in \mathbb{R}$.

(c) —

7. ——

8. Answer.

(a) (I) Pick any $x \in A$

(II) Pick any $y\in B$

(III) f(t) = y for any $t \in A$

There are many correct answers: as long as the 'formula of f' is 'complete' and f(x) = y according to the 'formula of f'.

 $(\mathrm{IV}) \,\operatorname{\mathsf{Map}}(A,B)$

(V) $E_x(f) = f(x) = y$

(b) (I) some distinct

(II) there exists some $u \in A$ such that E_u is injective

(III) $x \in A \setminus \{u\}$

(IV) Define $f: A \longrightarrow B$ by

(V) for any

(VI)
$$t = u$$

(VII) $f(u) = y = g(u) = E_u(g)$

- (VIII) f = g
- (IX) $y \neq z$
- (X) $f \neq g$