- 1. (a) Denote the statement below by (M):
 - (M): Suppose A is a set, and $f, g: A \longrightarrow A$ are functions. Then the equality $g \circ f = f \circ g$ as functions holds. Write down the negation $(\sim M)$ of the statement (M).
 - (b) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be functions defined by $f(x) = \frac{x^2}{1+x^2}, g(x) = x 1$ for any $x \in \mathbb{R}$.
 - i. Write down the respective 'formulae of definition' of the functions $g \circ f$, $f \circ g$ explicitly.
 - ii. Name an appropriate real number x_0 for which $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Justify your answer.
 - iii. Is it true that $g \circ f = f \circ g$ as functions? Justify your answer.

Remark. Hence we have dis-proved the statement (M) by giving a counter-example. (Why?)

(c) Define $A = \{0, 1\}.$

Name a pair of functions $f, g : A \longrightarrow A$ for which $g \circ f \neq f \circ g$ as functions. Justify your answer. **Remark.** Hence we have dis-proved the statement (M) with another counter-example. (Why?)

2. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^{\frac{5}{3}} - 1$ for any $x \in \mathbb{R}$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (A) and a proof for the statement (B). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

- (a) Here we prove the statement (A):
 - (A) The function f is surjective.

 $\begin{bmatrix} \text{We want to verify that } f \text{ is surjective. This amounts to verifying the statement} \\ \underline{(I)} \quad y \in \mathbb{R}, \underline{(II)} \quad x \in \mathbb{R} \text{ such that } \underline{(III)} \quad \underline{?} \end{bmatrix}$ $\underline{(IV)} \quad y \in \mathbb{R}.$ $\text{Take} \quad \underbrace{(V)} \quad \text{. Note that } x \in \mathbb{R}.$ Also note that $\underline{(VI)} \quad \text{.}$ It follows that $\underline{(VII)} \quad \text{.}$

- (b) Here we prove the statement (B):
 - (B) The function f is injective.

[We want to verify that f is injective. This amounts to verifying the statement '__(I) x, w \in \mathbb{R}, __(II) then x = w.'] Pick any __(III) . <u>(IV)</u> f(x) = f(w). Then $x^{\frac{5}{3}} =$ __(V) $= w^{\frac{5}{3}}$. Since $x, w \in \mathbb{R}$, we have $x = (x^{\frac{5}{3}})^{\frac{3}{5}} =$ _(VI) . It follows that __(VII) .

3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{x}{x^2 + 1}$ for any $x \in \mathbb{R}$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (C) and a proof for the statement (D). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

(a) Here we prove the statement (C):

(C) The function f is not surjective.

 $[\text{We want to verify that } f \text{ is not surjective. This amounts to verifying the statement } `(I) y_0 \in \mathbb{R} \text{ such that } (II) x \in \mathbb{R} \text{ such that } (III) ?]$ $(IV) y_0 = 1.$ $We \text{ verify, using the method of proof-by-contradiction, that } (V) , f(x) \neq y_0:$ * (VI) it were true that (VII) . $Then \frac{x_0}{x_0^2 + 1} = f(x_0) = y_0 = 1.$ $Therefore (VIII) = x_0^2 - x_0 + 1 = (IX) > 0. \text{ Contradiction arises.}$ It follows that (X) .

- (b) Here we prove the statement (D):
 - (D) The function f is not injective.

[We want to verify that
$$f$$
 is not injective. This amounts to verifying the statement
(I) $x_0, w_0 \in \mathbb{R}$ such that $f(x_0)$ (II) and (III) .']
Take $x_0 = \frac{1}{2}$, (IV) . Note that $x_0, w_0 \in \mathbb{R}$.
Also note that (V) .
We have $f(x_0) = \frac{1/2}{(1/2)^2 + 1} = \frac{2}{5}$ and (VI) . Then $f(x_0) =$ (VII) .
It follows that (VIII) .

4. Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^5$ for any $z \in \mathbb{C}$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (E) and a proof for the statement (F). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

- (a) Here we prove the statement (E):
 - (E) The function f is surjective.

[We want to verify the statement ' (I) ']					
(II)	For this ζ ,	(III)	such that $\zeta = \zeta (\cos(\theta) + i\sin(\theta)).$		
$\frac{(\mathrm{IV})}{\mathrm{By \ definition, }}$	$z \in \mathbb{C}$.				
Note that $f(z)$		(V)			
It follows that	(VI)	•			

- (b) Here we prove the statement (F):
 - (F) The function f is not injective.

[We want to verify the statement '		(I)	']
(II)	_		
Note that $z_0, w_0 \in \mathbb{C}$. Also note that	(III) .		
We have (IV) and	(V)		
Then $f(z_0) = f(w_0)$.			
It follows that (VI) .			

5. (a) Fill in the blanks in the passage below so as to give the definition for the notion of *identity function on a set*:

(I) . The identity function on C is the function id_C : (II) defined by (III)

- (b) Consider the statement (T):
 - (T) Let A be a set, and $f : A \longrightarrow A$ be a function. Suppose $f \circ f = f$. Further suppose (f is injective or f is surjective). Then $f = id_A$.

Fill in the blacks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (T). (*The 'underline' for each black bears no definite relation with the length of the answer for that black.*)

Let A be a set, and $f: A \longrightarrow A$ be a function. Suppose $f \circ f = f$. (\star) (I) We want to verify that $f = id_A$. This amounts to verifying 'for any $x \in A$, $f(x) = id_A(x)$ '. • (Case 1.) Suppose f is injective. Pick any (II) . By the definition of the function f, we have $f(x) \in A$. By (\star) , we have $(f \circ f)(x) =$ (III) By the definition of composition, we have (IV) = f(f(x)). Then f(f(x)) = f(x). Now, by (V) , we have (VI) . It follows that $f = id_A$. • (Case 2.) (VII) (VIII) $x \in A$. By the definition of surjectivity, (IX)Then we have f(x) = f(f(u)) = (X) by the definition of composition. By (\star) , we have (XI) = x. Then $f(x) = x = id_A(x)$. It follows that (XII) . Hence, in any case, $f = id_A$.

- (c) Hence, or otherwise, prove the statement (\sharp) :
 - (\sharp) Let B be a set, K be a subset of B, and $\varphi : \mathfrak{P}(B) \longrightarrow \mathfrak{P}(B)$ be the function defined by $\varphi(S) = S \cap K$ for any $S \in \mathfrak{P}(B)$. Suppose φ is injective or φ is surjective. Then K = B.
- 6. We introduce the definition for the notion of zero of a function below:

Let D be a subset of \mathbb{C} , and $f: D \longrightarrow \mathbb{C}$ be a function. Let $\zeta \in D$. We say ζ is a zero of f in D if $f(\zeta) = 0$.

In this question, you may take for granted that every polynomial function is continuous on \mathbb{R} . You may also take for granted the validity of Bolzano's Intermediate Value Theorem (BIVT):

- **(BIVT)** Let $a, b \in \mathbb{R}$, with a < b, and $f : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose f is continuous on [a, b]. Further suppose f(a)f(b) < 0. Then f has a zero in (a, b).
 - (a) Let $p, q, r \in \mathbb{R}$, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^3 + px^2 + qx + r$ for any $x \in \mathbb{R}$. Define b = 1 + 2(|p| + |q| + |r|), and a = -b.
 - i. Prove that $f(b) \ge \frac{b^3}{2}$ and $f(a) \le -\frac{b^3}{2}$.
 - **Remark.** You may need to apply the Triangle Inequality at some point.
 - ii. Hence apply Bolzano's Intermediate Value Theorem to deduce that f has a zero in (a, b).
 - (b) \diamond By applying the result in the previous part, or otherwise, prove the statement (\sharp):
 - (\sharp) Suppose $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a cubic polynomial function with real coefficients. Then g is surjective.

(c)^{\clubsuit} Determine whether the statement (\natural) is true or false. Justify your answer.

- (\natural) Let A, B, C, K, L be real numbers, with $L \neq 0$. Suppose $h : \mathbb{R} \longrightarrow \mathbb{R}$ is the rational function defined by $h(x) = \frac{x^3 + Ax^2 + Bx + C}{(x K)^2 + L^2}$ for any $x \in \mathbb{R}$. Then h is surjective.
- 7. Take for granted the validity of the Mean-Value Theorem (MVT):
- (MVT) Let D be a subset of \mathbb{R} and $f : D \longrightarrow \mathbb{R}$ be a function. Let $a, b \in D$, with a < b, and with $[a, b] \subset D$. Suppose f is continuous on [a, b], and f is differentiable on (a, b). Then there exists some $x_0 \in (a, b)$ such that $f(b) - f(a) = (b - a)f'(x_0)$.

Let p, q be real numbers, with p, q and $g: (p, q) \longrightarrow \mathbb{R}$ be a function. Suppose g is differentiable on (p, q), and g'(x) > 0 for any $x \in (p, q)$. Prove the statements below:

- (a) $\diamond g$ is strictly increasing on (p,q).
- (b) g is injective.

8. \bullet We introduce the notation for the set of all functions from a given set to a given set:

Let D, R be sets. The set of all functions with domain D and range R is denoted by Map(D, R).

Let A, B be non-empty sets. For any $x \in A$, define the function $E_x : \operatorname{Map}(A, B) \longrightarrow B$ by $E_x(f) = f(x)$ for any $x \in A$. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (P) and a proof for the statement (Q). (*The 'underline' for each blank bears* no definite relation with the length of the answer for that blank.)

- (a) Here we prove the statement (P):
 - (P) For any $x \in A$, the function E_x is surjective.

(I) . We verify that E_x is surjective: • (II) . Define the function $f : A \longrightarrow B$ by (III) . By definition, $f \in (IV)$. By definition of E_f , we have (V) . It follows that E_x is surjective.

- (b) Here we prove the statement (Q):
 - (Q) Suppose B has more than one element. Also suppose there exists some $u \in A$ such that E_u is injective. Then A is a singleton.

Suppose B has more than one element. Pick (I) $y, z \in B$. Also suppose (II) . Note that $\{u\} \subset A$. We now verify $A \subset \{u\}$:

• Pick any $x \in A$. Suppose it were true that $x \notin \{u\}$. Then by definition of complement, (III) .

$$(IV) f(t) = y (V) t \in A.$$

Define
$$g: A \longrightarrow B$$
 by $g(t) = \begin{cases} y & \text{if } (\text{VI}) \\ z & \text{if } t \in A \setminus \{u\} \end{cases}$

By definition, $f, g \in Map(A, B)$.

We have $E_u(f) = (VII)$. Then, since E_u is injective, we have (VIII). Recall that $x \in A \setminus \{u\}$. Since f(x) = y and g(x) = z and (IX), we have (X). Now f = g and $f \neq g$. Contradiction arises.

It follows that in the first place, we have $x \in \{u\}$.

Hence $A = \{u\}$.