MATH1050 Assignment 8 (Answers and selected solutions)

1. Answer.

(a)	Least element: -1 . Greatest element: <i>None</i> . The set concerned is bounded above by 1 in \mathbb{R} . (Every real number no less than 1 is an upper bound.)
(b)	Least element: None.
(0)	The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.)
	Greatest element: None.
	The set concerned is bounded above by 1 in R. (Every real number no less than 1 ia an upper bound.)
(c)	Least element: None.
(C)	The set concerned is bounded below by 0 in \mathbb{R} . (Every real number no greater than 0 is a lower bound.)
	Greatest element: 1.
(d)	Least element: None.
(u)	The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.)
	Greatest element: 2.
(e)	Least element: None.
(-)	The set concerned is bounded below by 1 in R. (Every real number no greater than 1 is a lower bound.)
	Greatest element: None.
	The set concerned is not bounded above in \mathbb{R} .
(f)	Least element: None.
	The set concerned is bounded below by 1 in \mathbb{R} . (Every real number no greater than 1 is a lower bound.)
	Greatest element: None.
	The set concerned is not bounded above in \mathbb{R} .
(g)	Least element: None.
	The set concerned is bounded below by $-\frac{3}{2}$ in \mathbb{R} . (Every real number no greater than $-\frac{3}{2}$ is a lower bound.)
	Greatest element: None
(1)	The set concerned is not bounded above in \mathbb{R} .
(n)	Least element: -1.
(;)	Greatest element: 2. Least element: None.
(1)	The set concerned is not bounded below in \mathbb{R} .
	Greatest element: None.
	The set concerned is bounded above by 1 in \mathbb{R} . (Every real number no less than 1 is a upper bound.)
(j)	Least element: None.
	The set concerned is bounded below by -3 in \mathbb{R} . (Every real number no greater than -3 is a lower bound.)
	Greatest element: None.
	The set concerned is bounded above by 1 in $\mathbb{R}.$ (Every real number no less than 1 is a upper bound.)
(k)	Least element: None.
	The set concerned is bounded below by 0 in $\mathbb{R}.$ (Every real number no greater than 0 is a lower bound.)
	Greatest element: 2.
(l)	Least element: None.
	The set concerned is bounded below by -1 in \mathbb{R} . (Every real number no greater than -1 is a lower bound.)
	Greatest element: None.
	The set concerned is bounded below by 1 in \mathbb{R} . (Every real number no less than 1 is a upper bound.)

2. Answer.

(a) (I)
$$\frac{1}{\sqrt{2}}$$

(II)
$$\lambda = 0 \cdot 1 + \frac{1}{2} \cdot \sqrt{2}$$

(III) \mathbb{Q}
(IV) $\frac{1}{\sqrt{2}} \leq \lambda < \sqrt{2}$
(V) $\lambda \in B$
(VI) and
(VI) Pick any $x \in C$
(VIII) and $x \in B$
(IX) $\frac{1}{\sqrt{2}} \leq x < \sqrt{2}$
(X) $x \geq \lambda$
(I) Suppose
(II) a greatest element in \mathbb{R}
(III) $\mu \in A$ and $\mu \in B$
(IV) there would exist some $a, b \in \mathbb{Q}$ such
(V) $\mu \in B$
(VI) $\frac{1}{\sqrt{2}} \leq \mu < x_0 < \sqrt{2}$
(VII) $\frac{a}{2} + \frac{b+1}{2}\sqrt{2}$
(VIII) $a \in \mathbb{Q}$
(IX) $\frac{b+1}{2} \in \mathbb{Q}$
(X) $x_0 \in A$
(XI) $x_0 \in C$
(XII) μ was a greatest element of C

3. Answer.

(b)

- (a) —
- (b) $\frac{1}{25}$ is the least element of *T*.
- (c) *Hint.* $\frac{1}{125}$ is an element of S and is not an element of T.
- (d) *Hint.* Given that $u, v \in S$ and u < v, is it true that $\frac{4u + v}{5} \in S$ and $u < \frac{4u + v}{5} < v$?

that

4. Answer.

- (a) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (b) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (c) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (d) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (e) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence
- (f) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (g) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.

- (h) This infinite sequence is strictly increasing. 3/2 is an upper bound of this infinite sequence.
- (i) This infinite sequence is strictly increasing.3/2 is an upper bound of this infinite sequence.
- (j) This infinite sequence is strictly decreasing.0 is a lower bound for this infinite sequence.
- (k) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.
- (l) This infinite sequence is strictly decreasing.0 is a lower bound of this infinite sequence.
- (m) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.
- (n) This infinite sequence is strictly increasing.1 is an upper bound of this infinite sequence.
- 5. —
- 6. (a)
 - (b) Answer.

 $\lim_{n \to \infty} a_n = \alpha.$

- 7. (a) **Answer.**
 - (I) $c_n = \frac{a_n + b_n}{2}$ and $a_n \le c_n \le b_n$ and $b_n a_n = \frac{b-a}{2^n}$ and $g(a_n) < 0$ and $g(b_n) > 0$ (II) By definition, $a_0 = a < b = b_0$ and $c_0 = \frac{a+b}{2} = \frac{a_0 + b_0}{2}$. Then $a_0 \le c_0 \le b_0$. Also, $b_0 - a_0 = b - a = \frac{b - a}{2^0}$. By definition, $g(a_0) = g(a) < 0$ and $g(b_0) = g(b) > 0$. (III) Then, by definition, $a_{k+1} = c_k$, $b_{k+1} = b_k$ and $c_{k+1} = \frac{c_k + b_k}{2} = \frac{a_{k+1} + b_{k+1}}{2}$. Since $c_k \le b_k$, we have $a_{k+1} \le c_{k+1} \le b_{k+1}.$ Moreover, $b_{k+1} - a_{k+1} = b_k - c_k = b_k - \frac{a_k + b_k}{2} = \frac{b_k - a_k}{2} = \frac{b - a_k}{2^{k+1}}$ Also, by definition, $g(a_{k+1}) = g(c_k) < 0$ and $g(b_{k+1}) = g(b_k) > 0$. (IV) Suppose $g(c_k) > 0$. Then, by definition, $a_{k+1} = a_k$, $b_{k+1} = c_k$ and $c_{k+1} = \frac{a_k + c_k}{2} = \frac{a_{k+1} + b_{k+1}}{2}$. Since $a_k \leq c_k$, we have $a_{k+1} \leq c_{k+1} \leq b_{k+1}$. Moreover, $b_{k+1} - a_{k+1} = c_k - a_k = \frac{a_k + b_k}{2} - a_k = \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$ Also, by definition, $g(a_{k+1}) = g(a_k) < 0$ and $g(b_{k+1}) = g(c_k) > 0$. (V) $c_{k+1} = \frac{a_{k+1} + b_{k+1}}{2}$ and $a_{k+1} \le c_{k+1} \le b_{k+1}$ and $b_{k+1} - a_{k+1} = \frac{b-a}{2^{k+1}}$ and $g(a_{k+1}) < 0$ and $g(b_{k+1}) > 0$ (VI)• Let $n \in \mathbb{N}$. By definition, $a_{n+1} = c_n$ or $a_{n+1} = a_n$. * (Case 1). Suppose $a_{n+1} = c_n$. Note that $a_n \le c_n \le b_n$. Then $a_{n+1} = c_n = \frac{a_n + b_n}{2} \le \frac{a_n + a_n}{2} = a_n$. * (Case 2). Suppose $a_{n+1} = a_n$. Then $a_{n+1} \le a_n$. Therefore $a_{n+1} \leq a_n$ in any case. Hence $\{a_n\}_{n=0}^{\infty}$ is increasing. • Let $n \in \mathbb{N}$. We have $a_n \leq b_n \leq b_{n-1} \leq \cdots \leq b_1 \leq b_0 = b$.

Hence $\{a_n\}_{n=0}^{\infty}$ is bounded above by b.

• By the Bounded-Monotone Theorem, $\{a_n\}_{n=0}^{\infty}$ converges in \mathbb{R} .

(VII)

- Let $n \in \mathbb{N}$. By definition, $b_{n+1} = c_n$ or $b_{n+1} = b_n$.
 - * (Case 1). Suppose $b_{n+1} = c_n$. Note that $a_n \le c_n \le b_n$. Then $b_{n+1} = c_n = \frac{a_n + b_n}{2} \ge \frac{b_n + b_n}{2} = b_n$. * (Case 2). Suppose $b_{n+1} = b_n$. Then $b_{n+1} \le b_n$.
 - Therefore $b_{n+1} \leq b_n$ in any case.
 - Hence $\{b_n\}_{n=0}^{\infty}$ is decreasing.
- Let n ∈ N. We have b_n ≥ a_n ≥ a_{n-1} ≥ ··· ≤ a₁ ≤ a₀ = a. Hence {b_n}[∞]_{n=0} is bounded below by a.
- By the Bounded-Monotone Theorem, $\{b_n\}_{n=0}^{\infty}$ converges in \mathbb{R} .

(VIII) We have $\ell_b - \ell_a = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = \lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b - a}{2^n} = 0.$ Then $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n$. (IX) We have $a_n \leq c_n \leq b_n$ for each $n \in \mathbb{N}$. We have just verified that $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ exist in \mathbb{R} and are equal to ℓ . Then by the Sandwich Rule, we conclude that $\lim_{n\to\infty} c_n$ exists in \mathbb{R} , and is equal to ℓ . (X) We have $a = a_0 = \lim_{n \to \infty} a_0 \le \lim_{n \to \infty} a_n = \ell = \lim_{n \to \infty} b_n \le \lim_{n \to \infty} b_n = b_0 = b.$ (XI) $\lim_{n \to \infty} g(a_n) = g(\ell) = \lim_{n \to \infty} g(a_n)$ (XII) $g(\ell) = 0$ and $g(\ell) \neq 0$ (b) — (c) — 8. (a) — (b) i. Answer. f(0) = 1.ii. —— (c) — 9. (a) — (b) i. Answer. R = 1, S = 1, T = 1.ii. iii. iv. — (c) — (d) —