MATH1050 Assignment 8

- 1. Consider each of the subsets of ${\sf I\!R}$ below.
 - Determine whether it has any least element. If *yes*, name it as well. If it has no least element, determine whether it has a lower bound in \mathbb{R} .
 - Determine whether it has any greatest element. If *yes*, name it as well. If it has no greatest element, determine whether it has an upper bound in \mathbb{R} .

There is no need to justify your answers. (Drawing appropriate pictures, on the real line or on the coordinate plane, may help you find the answers.)

 $\begin{array}{ll} \text{(a)} & [-1,1) \cap \mathbb{Q} & \text{(b)} & [-1,1) \setminus \mathbb{Q} & \text{(j)} & \{x \in \mathbb{R} : x^2 - 2x - 3 < 0.\} \\ \text{(b)} & [-1,1) \setminus \mathbb{Q} & \text{(f)} & (1,+\infty) \setminus \mathbb{Q} & \text{(k)}^{\diamond} & \left\{ \frac{1}{2^m} + \frac{1}{3^n} \middle| m, n \in \mathbb{N}. \right\} \\ \text{(c)} & \left\{ \frac{1}{n+1} \middle| n \in \mathbb{N}. \right\} & \text{(g)} & \{x \in \mathbb{R} : 2x + 3 > 0.\} & \text{(k)}^{\diamond} & \left\{ \frac{1}{2^m} + \frac{1}{3^n} \middle| m, n \in \mathbb{N}. \right\} \\ \text{(d)}^{\diamond} & \left\{ \frac{1}{n+1} + (-1)^n \middle| n \in \mathbb{N}. \right\} & \text{(i)} & \{x \in \mathbb{R} : x < x^{-1}.\} & \text{(l)}^{\bigstar} & \left\{ \frac{1}{2^m} - \frac{1}{3^n} \middle| m, n \in \mathbb{N}. \right\} \\ \end{array}$

2. Let $A = \{x \in \mathbb{R} : x = a + b\sqrt{2} \text{ for some } a, b \in \mathbb{Q}\}, B = \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right) \text{ and } C = A \cap B.$

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they gives a proof for the statement (P) and a dis-proof against the statement (Q).

(a) Here we prove the statement (P):

(P) C has a least element.

Take $\lambda = _(I)$. • We have $_(II)$, and $0, \frac{1}{2} \in _(III)$. Then by the definition of A, we have $\lambda \in A$. Note that $_(IV)$. Then by the definition of B, we have $_(V)$. Now we have $\lambda \in A _(VI) _ \lambda \in B$. Therefore, by the definition of C, we have $\lambda \in C$. • $_(VII) _$. Then by the definition of C, we have $x \in A _(VIII)$. Therefore $x \in B$ in particular. Then by the definition of B, we have $_(IX)$. Recall that $\lambda = \frac{1}{\sqrt{2}}$. Therefore $_(X)$. It follows that λ is a least element of C.

- (b) Here we dis-prove the statement (Q):
 - (Q) C has a greatest element.

 $\begin{array}{c} \underline{(I)} & \text{it were true that } C \text{ had } \underline{(II)} & \text{, which we denote by } \mu. \\ \hline \text{Then, by definition, } \mu \in C. \text{ Therefore } \underline{(III)} & \text{by the definition of } C. \\ \hline \text{Since } \mu \in A, \underline{(IV)} & \mu = a + b\sqrt{2}. \\ \hline \text{Since } \underline{(V)} & \text{, we would have } \frac{1}{\sqrt{2}} \leq \mu < \sqrt{2}. \\ \hline \text{Define } x_0 = \frac{\mu + \sqrt{2}}{2}. \\ \hline \text{By definition, we would have } \underline{(VI)} & \text{. Then } x_0 > \mu \text{ and } x_0 \in B. \\ \hline \text{Also by definition, } x_0 = \frac{\mu + \sqrt{2}}{2} = \frac{a + b\sqrt{2} + \sqrt{2}}{2} = \underline{(VII)}. \\ \hline \text{Since } \underline{(VIII)} & \text{, we would have } \frac{a}{2} \in \mathbb{Q}. \text{ Since } b \in \mathbb{Q}, \text{ we would have } \underline{(IX)} & \text{. Then } \underline{(X)} \\ \hline \text{Now } x_0 \in A \text{ and } x_0 \in B. \\ \hline \text{How } \underline{(XII)} & \text{. Contradiction arises.} \\ \end{array}$

3. Let
$$S = \left\{ x \in \left(0, \frac{1}{24}\right) : x = \frac{b}{5^a} \text{ for some } a, b \in \mathbb{N} \right\}$$
, and $T = \left\{ y \in \mathbb{R} : y = \sum_{k=1}^n \frac{1}{25^k} \text{ for some } n \in \mathbb{N} \setminus \{0\} \right\}$

- (a) Verify that $T \subset S$.
- (b) Does T have a least element? Justify your answer.
- (c) Prove that $S \notin T$. **Remark.** The result you obtain in part (b) may be useful.
- (d) \diamond Prove the statement (\sharp):
 - (\sharp) For any $u, v \in S$, if u < v then there exists some $w \in S$ such that u < w < v.
- 4. Consider each of the infinite sequences (of non-negative real numbers) below. Determine whether it is strictly increasing or strictly decreasing or neither.
 - Where it is strictly increasing, determine whether it is bounded above in \mathbb{R} ; if it is bounded above in \mathbb{R} , name an upper bound for it.
 - Where it is strictly decreasing, determine whether it is bounded below in \mathbb{R} ; if it is bounded below in \mathbb{R} , name a lower bound for it.

There is no need to justify your answers.

$$\begin{array}{ll} \text{(a)} & \left\{\frac{1}{n}\right\}_{n=1}^{\infty} & \text{(f)} & \left\{\frac{(n!)^2}{(2n)!}\right\}_{n=0}^{\infty} & \text{(k)} & \left\{\frac{n}{\sqrt{2}}\right\}_{n=2}^{\infty} \\ \text{(b)} & \left\{\frac{1}{n^2}\right\}_{n=1}^{\infty} & \text{(g)} & \left\{\sqrt{2}\right\}_{n=2}^{\infty} & \text{(l)} & \left\{1-\prod_{k=2}^{n}\cos\left(\frac{\pi}{2k}\right)\right\}_{n=2}^{\infty} \\ \text{(c)} & \left\{\frac{n+1}{n^2+n+1}\right\}_{n=0}^{\infty} & \text{(h)} & \left\{\sum_{k=0}^{n}\frac{1}{3^k}\right\}_{n=0}^{\infty} & \text{(l)} & \left\{1-\prod_{k=2}^{n}\cos\left(\frac{\pi}{2k}\right)\right\}_{n=2}^{\infty} \\ \text{(d)} & \left\{\frac{2}{3^n}\right\}_{n=0}^{\infty} & \text{(i)} & \left\{\sum_{k=2}^{n}\frac{2}{k^2-1}\right\}_{n=2}^{\infty} & \text{(m)} & \left\{\prod_{k=1}^{n}\frac{1}{2^k}\right\}_{n=1}^{\infty} \\ \text{(e)} & \left\{\frac{5^n}{n!}\right\}_{n=5}^{\infty} & \text{(j)} & \left\{\frac{n^2}{3^n}\right\}_{n=2}^{\infty} & \text{(n)} & \left\{1-\frac{1}{2^n}+\frac{(-1)^n}{5^n}\right\}_{n=1}^{\infty} \end{array} \right.$$

5. Define $a_n = \sum_{k=1}^n \frac{1}{k^2}$, $b_n = \sum_{k=1}^n \frac{1}{k^3}$ for each $n \ge 1$.

(a)^{*} Prove that $a_{2^{m+1}-1} - a_{2^m-1} \leq \frac{1}{2^m}$ for each $m \geq 1$. Hence deduce that $\{a_n\}_{n=1}^{\infty}$ is bounded above by 2. (*Hint.* It help to observe that $a_n \leq a_{2^n-1}$ for each n. But is this observation true? Why?)

(b) \diamond By applying the result in the previous part, or otherwise, prove that $\{b_n\}_{n=1}^{\infty}$ is bounded above by 2.

6. Let p be a positive real number, and $\alpha = \sqrt[3]{p}$. Suppose $b \in (\alpha, +\infty)$. Define infinite sequence $\{a_n\}_{n=0}^{\infty}$ recursively by

$$\begin{cases} a_0 &= b\\ a_{n+1} &= \frac{1}{3}\left(2a_n + \frac{\alpha^3}{{a_n}^2}\right) & \text{for any } n \in \mathbb{N} \end{cases}$$

(a)^{\clubsuit} Prove the statements below:

- i. $\{a_n\}_{n=0}^{\infty}$ is bounded below by α in \mathbb{R} .
- ii. $\{a_n\}_{n=0}^{\infty}$ is strictly decreasing.
- (b) Prove that $\{a_n\}_{n=0}^{\infty}$ converges in \mathbb{R} , and determine the value of $\lim_{n \to \infty} a_n$.
- 7. (a) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (G):
 - (G) Let $a, b \in \mathbb{R}$, with a < b. Let $g : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on [a, b], and g(a) < 0 < g(b). Then there exists some $x_0 \in (a, b)$ such that $g(x_0) = 0$.

Let $a, b \in \mathbb{R}$, with a < b. Let $g : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on [a, b], and g(a) < 0 < g(b). Further suppose for any $x \in (a, b)$, $g(x) \neq 0$. [We are going to obtain a contradiction.] Let $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{c_n\}_{n=0}^{\infty}$ be three recursively defined infinite sequences of real numbers, by $\begin{cases} (a_0, b_0, c_0) &= \left(a, b, \frac{a+b}{2}\right) \\ (a_{n+1}, b_{n+1}, c_{n+1}) &= \begin{cases} \left(c_n, b_n, \frac{c_n + b_n}{2}\right) & \text{if } g(c_n) < 0 \\ \left(a_n, c_n, \frac{a_n + c_n}{2}\right) & \text{if } g(c_n) > 0 \end{cases}$ We apply mathematical induction to prove that for any $n \in \mathbb{N}$ $c_n = \frac{a_n + b_n}{2}$ and $a_n \le c_n \le b_n$ and $b_n - a_n = \frac{b-a}{2^n}$ and $g(a_n) < 0$ and $g(b_n) > 0$. Denote by P(n) the proposition ______ (I) _____. Hence P(0) is true. (II)• Let $k \in \mathbb{N}$. Suppose P(k) is true. Then $c_k = \frac{a_k + b_k}{2}$ and $a_k \le c_k \le b_k$ and $b_k - a_k = \frac{b-a}{2^k}$ and $g(a_k) < 0$ and $g(b_k) > 0$. We verify that P(k+1) is true: (*) (Case 1). Suppose $g(c_k) < 0$. (III) (*) (Case 2).(IV) (V) . Hence P(k+1) is true. Therefore, in any case, By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N}$. We prove that $\{a_n\}_{n=0}^{\infty}$ converges in \mathbb{R} , with the help of the Bounded-Monotone Theorem: We also prove that $\{b_n\}_{n=0}^{\infty}$ converges in \mathbb{R} : (VII) We prove that $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ converge to the same limit: • Write $\lim_{n \to \infty} a_n = \ell_a$. Write $\lim_{n \to \infty} b_n = \ell_b$. (VIII) Now write $\ell = \ell_a = \ell_b$. We prove that $\{c_n\}_{n=0}^{\infty}$ converges to ℓ with the help of the Sandwich Rule: (IX) We prove that $a \leq \ell \leq b$: (\mathbf{X}) We apply the continuity of g on [a, b] to verify that $g(\ell) = 0$: • Since g is continuous on [a, b], g is continuous at ℓ . Since $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ both converge to ℓ , we have (XI) by the continuity of q. • We have $g(a_n) < 0$ for any $n \in \mathbb{N}$. Then $\lim g(a_n) \le 0$. We have $g(b_n) > 0$ for any $n \in \mathbb{N}$. Then $\lim_{n \to \infty} g(b_n) \ge 0$. Then $0 \leq \lim_{n \to \infty} g(b_n) = g(\ell) = \lim_{n \to \infty} g(a_n) \leq 0$. Therefore we would have $g(\ell) = 0$. Recall that by assumption, $g(a) \neq 0$ and $g(b) \neq 0$ and for any $x \in (a, b), g(x) \neq 0$. Then, since $a \leq \ell \leq b$, we also have $g(\ell) \neq 0$. (XII) Now we have obtained . Contradiction arises. It follows that, in the first place, there exists some $x_0 \in (a, b)$ such that $g(x_0) = 0$.

(b) Hence, or otherwise, deduce Bolzano's Intermediate Value Theorem:

Let $a, b \in \mathbb{R}$, with a < b. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose f(a)f(b) < 0. Suppose f is continuous on [a, b]. Then there exists some $x_0 \in (a, b)$ such that $f(x_0) = 0$.

(c) Hence, or otherwise, deduce the Intermediate Value Theorem:

Let $a, b \in \mathbb{R}$, with a < b. Let $h : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose $h(a) \neq h(b)$. Suppose h is continuous on [a, b]. Then, for any $\gamma \in \mathbb{R}$, if γ is strictly between h(a) and h(b) then there exists some $c \in (a, b)$ such that $h(c) = \gamma$.

8. In this question, take for granted what you have learnt in the calculus of one real variable.

Let $f: [0,1] \longrightarrow \mathbb{R}$ be a function.

Suppose f is continuous on [0, 1], and $x^2 + (f(x))^2 = 1$ for any $x \in [0, 1]$.

- (a) Let $p \in [0, 1]$. Prove that f(p) = 0 iff p = 1.
- (b) Suppose $f(0) \ge 0$.
 - i. What is the value of f(0)?
 - ii.⁴ Prove that $f(x) = \sqrt{1 x^2}$ for any $x \in [0, 1]$.

Remark. You will need Bolzano's Intermediate Value Theorem at some stage in the argument.

- (c) Suppose $f(0) \le 0$. Prove that $f(x) = -\sqrt{1-x^2}$ for any $x \in [0,1]$.
- 9. This question is about the construction of the exponential function $\exp : \mathbb{R} \longrightarrow \mathbb{R}$, which is formally defined by $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ for any $x \in \mathbb{R}$. The first problem in such a construction is the question on the existence of the limit $\lim_{n \to \infty} \left(1 + \frac{\alpha}{n}\right)^n$ for each individual $\alpha \in \mathbb{R}$.

Let α be a positive real number. For each $n \geq 2$, define

$$a_n = \left(1 + \frac{\alpha}{n}\right)^n, \qquad b_n = \sum_{k=0}^n \frac{\alpha^k}{k!}, \qquad c_n = \left(1 - \frac{\alpha^2}{2n}\right) \sum_{k=0}^n \frac{\alpha^k}{k!}.$$

- (a) Prove that $\{b_n\}_{n=2}^{\infty}$ is strictly increasing.
- (b) i. By applying the Binomial Theorem, or otherwise, prove that whenever $n \ge 2$,

$$a_n = R + S\alpha + \sum_{k=2}^n \frac{T\alpha^k}{k!} \cdot T \cdot \left(T - \frac{1}{n}\right) \left(T - \frac{2}{n}\right) \cdot \dots \cdot \left(T - \frac{k-1}{n}\right).$$

Here R, S, T are positive integers which are independent of n. You have to determine the respective values of R, S, T explicitly.

- ii. Prove that $a_n < b_n$ whenever $n \ge 2$.
- iii.* Take for granted the validity of Archimedean Principle (AP) (in the formulation below):
- (AP) For any positive real number u, there exists some $M \in \mathbb{N} \setminus \{0\}$ such that M > u. Prove the statement (\sharp):

(\sharp) There exists some integer $N \ge 3$ such that for any $n \in \mathbb{N}$, if $n \ge 2$ then $b_n \le b_{N-1} + \frac{\alpha^N}{(1 - \alpha/N) \cdot (N!)}$.

iv.^{\diamond} Prove that $c_n < a_n$ whenever $n \ge \frac{\alpha^2}{2}$.

Remark. You may need to apply Weierstrass' Product Inequality at some stage of the argument.

(c) \diamond Prove that $\{a_n\}_{n=2}^{\infty}$ is strictly increasing.

Remark. You may need to apply Bernoulli's Inequality at some stage of the argument.

(d) Take for granted the validity of the Bounded-Monotone Theorem and the Sandwich Rule. Prove that $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$, $\lim_{n \to \infty} c_n$ exist and are equal to each other.

Remark. You may need to apply the Archimedean Principle at some stage of the argument.