MATH1050 Assignment 7

- 1. (a) Prove each of the statements below:
 - i. There exists some $x \in \mathbb{Z}$ such that x + 1 < 0.
 - ii. There exists some $x \in \mathbb{Z}$ such that x 1 > 0.
 - (b) Dis-prove the statement (\sharp) :
 - (#) There exists some $x \in \mathbb{Z}$ such that (x + 1 < 0 and x 1 > 0).

Remark. It can happen that $[(\exists x)P(x)] \land [(\exists y)Q(y)]$ is true while $(\exists x)(P(x) \land Q(x))$ is false. In general, $[(\exists x)P(x)] \land [(\exists y)Q(y)]$ does not imply $(\exists x)(P(x) \land Q(x))$.

- 2. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a dis-proof against the statement (D) and a dis-proof for the statement (E). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)
 - (a) We dis-prove the statement (D):
 - (D) There exist some $u \in \mathbb{R} \setminus \{-1, 0, 1\}, v \in \mathbb{R}$ such that $u^2 + v^2 \leq 2u^4$ and $u^6 + v^6 \leq 2v^4$.

[We dis-prove the statement (D) by obtaining a contradiction from it.]
(I) there existed some (II) , $v \in \mathbb{R}$ such that $u^2 + v^2 \leq 2u^4$ and (III) .
For the same u, v , we would have $u^2 + v^2 - 2u^4 \le 0$ and $u^6 + v^6 - 2v^4 \le 0$.
Then $u^2(u^2-1)^2 + v^2(v^2-1)^2 = $ (IV) .
Since u, v are real, $u^2(u^2 - 1)^2 \ge 0$ and $v^2(v^2 - 1)^2 \ge 0$. Then $u^2(u^2 - 1)^2 = 0$ and $v^2(v^2 - 1)^2 = 0$ respectively.
In particular, (V) . Then $u = 0$ or $u = -1$ or $u = 1$. But (VI) .
Contradiction arises.

- (b) We dis-prove the statement (E):
 - (E) There exist some $\zeta \in \mathbb{C} \setminus \mathbb{R}$ such that ζ is both an 89-th root of unity and a 55-th root of unity.

$$[\text{We dis-prove the statement } (E) \text{ by obtaining a contradiction from it.}] \\ \hline (I) \\ \hline (I) \\ \hline \text{For the same } \zeta, \text{ we would have } \zeta^{55} = _(II) \\ \text{ and } (III) \\ \text{ (Note that } \zeta \neq 0.) \text{ Then we would have } \zeta^{34} = \zeta^{89-55} = \zeta^{89}/\zeta^{55} = 1. \\ \text{Repeating the above argument, we would have:} \\ \hline (IV) \\ \hline \text{Recall that by assumption, } \zeta \in _(V) \\ \text{ Now } \zeta = 1 _(VI) \\ \hline \zeta \neq 1. \\ \text{ Contradiction arises.} \\ \hline \end{cases}$$

- 3. Here we are going to re-prove of the 'inequality part' of Cauchy-Schwarz Inequality, with the help of mathematical induction and the Triangle Inequality for the reals.
 - (a) Consider the statement (S):
 - (S) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are non-negative real numbers.

Then
$$\left(\sum_{j=1}^{n} a_j^2\right) \left(\sum_{j=1}^{n} b_j^2\right) \ge \left(\sum_{j=1}^{n} a_j b_j\right)^2$$
.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages so that it gives an argument for the statement (S) by mathematical induction.

Denote by P(n) the proposition below: (I) • Suppose s, t, u, v are non-negative real numbers. We have $(s^2 + t^2)(u^2 + v^2) - (su + tv)^2 =$ (II) $\geq 0.$ Then $(III) \geq (IV) \quad .$ Hence P(2) is true. • Let $m \in \mathbb{N} \setminus \{0, 1\}$. Suppose P(m) is true. We verify that P(m+1) is true below: Suppose Define $A = \sqrt{\sum_{j=1}^{m} a_j^2}, B = \sqrt{\sum_{j=1}^{m} b_j^2}, C = _(VI)$. Note that A, B, C are non-negative real numbers. By P(2), we have $\left(\sum_{i=1}^{m+1} a_j^2\right) \left(\sum_{i=1}^{m+1} b_j^2\right) =$ _____ (VII) $\geq (AB + a_{m+1}b_{m+1})^2.$ By P(m), we have $AB \ge C^2$. Then $AB + (VIII) \ge (IX) + a_{m+1}b_{m+1} = \sum_{i=1}^{m+1} a_i b_i \ge 0$. Therefore $\left(\sum_{j=1}^{m+1} a_j^2\right) \left(\sum_{j=1}^{m+1} b_j^2\right) \ge (AB + a_{m+1}b_{m+1})^2 \ge \left(\sum_{j=1}^{m+1} a_j b_j\right)^2$. Hence P(m+1) is true. By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N} \setminus \{0, 1\}$.

- (b) By applying the result above together with the Triangle Inequality for the reals, or otherwise, prove the statement (T) below:
 - (T) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are real numbers.

Then
$$\left(\sum_{j=1}^{n} a_j^2\right) \left(\sum_{j=1}^{n} b_j^2\right) \ge \left(\sum_{j=1}^{n} a_j b_j\right)^2$$
.

Remark. Generalize the argument for the statement (T) to give a proof for the statement (T'):

(T) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $z_1, z_2, \dots, z_n, w_1, w_2, \dots, w_n$ are complex numbers.

Then
$$\left(\sum_{j=1}^{n} |z_j|^2\right) \left(\sum_{j=1}^{n} |w_j|^2\right) \ge \left|\sum_{j=1}^{n} z_j \overline{w_j}\right|^2$$
.

- 4. The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are independent of each other.
 - (a) Suppose x, y, z are real numbers. Prove that $yz + zx + xy \le (y + z x)^2 + (z + x y)^2 + (x + y z)^2$.

(b) Let
$$a > 0$$
. Prove that $\frac{a^n}{1+a+a^2+\dots+a^{2n}} \le \frac{1}{2n+1}$.
(c) Let n be a positive integer. Prove that $\sum_{k=0}^n \sqrt{\binom{n}{k}} \le \sqrt{2^n(n+1)}$.

5. (a) By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statement (\sharp) :

(#) Suppose
$$a_1, a_2, \dots, a_n$$
 are positive real numbers. Then $\frac{1}{n} \sum_{k=1}^n a_k \le \sqrt{\frac{1}{n} \sum_{k=1}^n a_k^2}$.

 $(b)^{\diamond}$ Hence, or otherwise, prove the statements below:

i. Let b_1, b_2, \dots, b_n be positive real numbers. Suppose $\sum_{k=1}^n b_k = S$. Then $\sum_{k=1}^n \sqrt{b_k} \le \sqrt{nS}$.

ii. Let c_1, c_2, \cdots, c_n be positive real numbers. Suppose $\sum_{k=1}^n c_k = 1 + \frac{1}{2n}$. Then $\sum_{k=1}^n \sqrt{2c_k + 1} \le n + 1$.

6. (a) Fill in the blanks in the passage below so as to give the statement for the Arithmetico-geometrical Inequality:

- (b) Consider the statement (T):
 - (T) Let x_1, x_2, \dots, x_k be positive real numbers, and r_1, r_2, \dots, r_k be positive rational numbers. Suppose $r_1 + r_2 + \dots + r_k = 1$. Then $r_1x_1 + r_2x_2 + \dots + r_kx_k \ge x_1^{r_1}x_2^{r_2} \cdot \dots \cdot x_k^{r_k}$.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (T), with the help of the Arithmetic-Geometric Inequality. (*The 'underline' for* each blank bears no definite relation with the length of the answer for that blank.)

Let x_1, x_2, \dots, x_k be positive real numbers, and r_1, r_2, \dots, r_k be positive rational numbers. Suppose $r_1 + r_2 + \dots + r_k = 1$.

Since (I) are rational numbers , (II) some integers (III) such that $r_1 = \frac{M_1}{N_1}$, (IV) .

Without loss of generality, we may assume $N_1 = N_2 = \cdots = N_k$. Write $N = N_1$.

Since r_1, r_2, \dots, r_k are (V), we may assume, without loss of generality, that M_1, M_2, \dots, M_k, N are positive.

By the Arithmetic-Geometric Inequality, we have

- $r_1 x_1 + r_2 x_2 + \dots + r_k x_k =$ (VII) \geq (VIII)
- (c) By applying the statement (T), or otherwise, prove the statement (T'):
 - (T') Suppose x_1, x_2, \dots, x_k are positive real numbers, and s_1, s_2, \dots, s_k are positive rational numbers. Then $\frac{s_1x_1 + s_2x_2 + \dots + s_kx_k}{s_1 + s_2 + \dots + s_k} \ge (x_1^{s_1}x_2^{s_2} \cdot \dots \cdot x_k^{s_k})^{1/(s_1 + s_2 + \dots + s_k)}$.
- 7. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are independent of each other.

(a) Suppose w, x, y, z are real numbers. Prove that $\frac{w^4 + x^2y^2 + y^2z^2 + z^2x^2}{4} \ge wxyz.$

- (b) Let a, b, c be positive real numbers. Suppose a + b + c = 1. Prove that $\left(\frac{1}{a} 1\right) \left(\frac{1}{b} 1\right) \left(\frac{1}{c} 1\right) \ge 8$.
- (c) Let n be a positive integer.
 - i. Prove that $n^n \ge 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-3) \cdot (2n-1)$.
 - ii. Hence deduce that $(n^2 + n)^n \ge (2n)!$.

8. Here we take for granted the result (†) known as the Area Comparison Theorem in the calculus of one real variable.

(†) Let a, b be real numbers, with $a \le b$, and let f, g be real-valued functions of one real variable whose domains contain the interval [a, b]. Suppose f, g are continuous on [a, b]. Further suppose that $f(x) \le g(x)$ for any $x \in [a, b]$. Then $\int_a^b f(t)dt \le \int_a^b g(t)dt$.

Let $h: [0, +\infty) \longrightarrow \mathbb{R}$ be a continuous function. Suppose that for any $x \in [0, +\infty)$,

$$h(x) \ge 0$$
 and $h(x) \ge 1 + \int_0^x 2uh(u)du$.

(a) Consider the statement (J):

(J) For any
$$n \in \mathbb{N}$$
, $h(x) \ge \sum_{j=0}^{n} \frac{x^{2j}}{j!}$ for any $x \in [0, +\infty)$.

Fill in the blacks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (J), with the help of the Area Comparison Theorem. (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

- Denote by P(n) the proposition that ________. • For any $x \in [0, +\infty)$, $h(x) \ge 0$. Then, for any $x \in [0, +\infty)$, we have $h(x) \ge 1 + \int_0^x 2uh(u)du \ge _______.$ (II) Hence P(0) is true. • Let $k \in \mathbb{N}$. _______. We have $h(x) \ge \sum_{j=0}^k \frac{u^{2j}}{j!}$ for any $x \in [0, +\infty)$. For any $x \in (0, +\infty)$, we have $h(x) \ge ______.$ (IV) $\ge ______.$ (V) Hence ______. By the Principle of Mathematical Induction, P(n) is true for any $n \in \mathbb{N}$.
- (b) Prove that $h(\sqrt{e}) \ge e^e$.
- 9. In this question, we are going to prove the existence of the limit $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$ and find its value.

Here we take for granted the result known as the **Area Comparison Theorem** in the *calculus of one real variable*. We further take for granted the result (‡) known as the **Sandwich Rule** in the *calculus of one real variable*:

- (‡) Let $\{u_n\}_{n=0}^{\infty}, \{v_n\}_{n=0}^{\infty}, \{w_n\}_{n=0}^{\infty}$ be infinite sequences of real numbers. Suppose $u_n \leq v_n \leq w_n$ for any $n \in \mathbb{N}$. Further suppose that both $\{u_n\}_{n=0}^{\infty}, \{w_n\}_{n=0}^{\infty}$ converge in \mathbb{R} , and converge to the same limit, say, ℓ . Then $\{v_n\}_{n=0}^{\infty}$ converges to ℓ also.
- (a) \diamond Apply mathematical induction to prove that $\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}$ for any positive integer n.
- (b) \clubsuit Prove the statement (\sharp), by considering appropriate definite integrals:
 - (#) Let x be a real number. Suppose x > 1. Then $\ln\left(\frac{x+1}{x}\right) \le \frac{1}{x} \le \ln\left(\frac{x}{x-1}\right)$.

(c) Applying the statement (\sharp), or otherwise, deduce that $\ln\left(\frac{2n+1}{n+1}\right) \leq \sum_{k=n+1}^{2n} \frac{1}{k} \leq \ln(2)$ for any positive integer *n*.

- (d) Hence, or otherwise, prove that the limit $\lim_{n \to \infty} \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$ exists and find its value.
- (e)[•] Let *n* be a positive integer. Prove that $\left|\sum_{k=n+1}^{2n} \frac{(-1)^{k+1}}{k}\right| \leq \frac{1}{n}$.

Hint.

- When n is even, group up pairs of consecutive terms in the sum, and simplify to give a sum of n/2 positive number. Now spot which of these n/2 numbers is the largest.
- When n is odd, first leave out the first term, and then proceed in the same way described above on the rest of the terms in the sum.

(f)^{\diamond} Hence, or otherwise, prove that the limit $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$ exists and find its value.

Hint. What can be said about the difference
$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$$
 for each positive integer *n*?