
MATH1050 Assignment 7

1. (a) Prove each of the statements below:
i. There exists some x ∈ Z such that x+ 1 < 0.
ii. There exists some x ∈ Z such that x− 1 > 0.

(b) Dis-prove the statement (♯):
(♯) There exists some x ∈ Z such that (x+ 1 < 0 and x− 1 > 0).

Remark. It can happen that [(∃x)P (x)]∧ [(∃y)Q(y)] is true while (∃x)(P (x)∧Q(x)) is false. In general, [(∃x)P (x)]∧
[(∃y)Q(y)] does not imply (∃x)(P (x) ∧Q(x)).

2. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a dis-proof against the statement (D) and a dis-proof for the statement (E). (The ‘underline’ for each blank bears
no definite relation with the length of the answer for that blank.)

(a) We dis-prove the statement (D):

(D) There exist some u ∈ R\{−1, 0, 1}, v ∈ R such that u2 + v2 ≤ 2u4 and u6 + v6 ≤ 2v4.

[We dis-prove the statement (D) by obtaining a contradiction from it.]

(I) there existed some (II) , v ∈ R such that u2 + v2 ≤ 2u4 and (III) .
For the same u, v, we would have u2 + v2 − 2u4 ≤ 0 and u6 + v6 − 2v4 ≤ 0.
Then u2(u2 − 1)2 + v2(v2 − 1)2 = (IV) .
Since u, v are real, u2(u2 − 1)2 ≥ 0 and v2(v2 − 1)2 ≥ 0. Then u2(u2 − 1)2 = 0 and v2(v2 − 1)2 = 0
respectively.
In particular, (V) . Then u = 0 or u = −1 or u = 1. But (VI) .
Contradiction arises.

(b) We dis-prove the statement (E):
(E) There exist some ζ ∈ C\R such that ζ is both an 89-th root of unity and a 55-th root of unity.

[We dis-prove the statement (E) by obtaining a contradiction from it.]

(I)
For the same ζ, we would have ζ55 = (II) and (III) by the definition of root of unity.
(Note that ζ ̸= 0.) Then we would have ζ34 = ζ89−55 = ζ89/ζ55 = 1.
Repeating the above argument, we would have:

(IV)
Recall that by assumption, ζ ∈ (V) . Then ζ ̸= 1.
Now ζ = 1 (VI) ζ ̸= 1.
Contradiction arises.

3. Here we are going to re-prove of the ‘inequality part’ of Cauchy-Schwarz Inequality, with the help of mathematical
induction and the Triangle Inequality for the reals.

(a) Consider the statement (S):
(S) Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are non-negative real numbers.

Then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages so
that it gives an argument for the statement (S) by mathematical induction.
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Denote by P (n) the proposition below:

(I)

• Suppose s, t, u, v are non-negative real numbers.

We have (s2 + t2)(u2 + v2)− (su+ tv)2 = (II) ≥ 0.

Then (III) ≥ (IV) .

Hence P (2) is true.

• Let m ∈ N\{0, 1}. Suppose P (m) is true. We verify that P (m+ 1) is true below:

Suppose (V) .

Define A =

√√√√ m∑
j=1

aj2, B =

√√√√ m∑
j=1

bj
2, C = (VI) .

Note that A,B,C are non-negative real numbers.

By P (2), we have

m+1∑
j=1

aj
2

m+1∑
j=1

bj
2

 = (VII) ≥ (AB + am+1bm+1)
2.

By P (m), we have AB ≥ C2. Then AB+ (VIII) ≥ (IX) +am+1bm+1 =

m+1∑
j=1

ajbj ≥ 0.

Therefore

m+1∑
j=1

aj
2

m+1∑
j=1

bj
2

 ≥ (AB + am+1bm+1)
2 ≥

m+1∑
j=1

ajbj

2

.

Hence P (m+ 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.

(b) By applying the result above together with the Triangle Inequality for the reals, or otherwise, prove the statement
(T ) below:
(T ) Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are real numbers.

Then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

Remark. Generalize the argument for the statement (T ) to give a proof for the statement (T ′):

(T ) Let n ∈ N\{0, 1}. Suppose z1, z2, · · · , zn, w1, w2, · · · , wn are complex numbers.

Then

 n∑
j=1

|zj |2
 n∑

j=1

|wj |2
 ≥

∣∣∣∣∣∣
n∑

j=1

zjwj

∣∣∣∣∣∣
2

.

4. The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are independent
of each other.

(a) Suppose x, y, z are real numbers. Prove that yz + zx+ xy ≤ (y + z − x)2 + (z + x− y)2 + (x+ y − z)2.

(b) Let a > 0. Prove that an

1 + a+ a2 + · · ·+ a2n
≤ 1

2n+ 1
.

(c) Let n be a positive integer. Prove that
n∑

k=0

√(
n

k

)
≤

√
2n(n+ 1).

5. (a) By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statement (♯):

(♯) Suppose a1, a2, · · · , an are positive real numbers. Then 1

n

n∑
k=1

ak ≤

√√√√ 1

n

n∑
k=1

ak2.

(b)♢ Hence, or otherwise, prove the statements below:
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i. Let b1, b2, · · · , bn be positive real numbers. Suppose
n∑

k=1

bk = S. Then
n∑

k=1

√
bk ≤

√
nS.

ii. Let c1, c2, · · · , cn be positive real numbers. Suppose
n∑

k=1

ck = 1 +
1

2n
. Then

n∑
k=1

√
2ck + 1 ≤ n+ 1.

6. (a) Fill in the blanks in the passage below so as to give the statement for the Arithmetico-geometrical Inequality:
Let (I) be (II) greater than 1. Suppose (III) are (IV) real numbers.
Then (V) ≥ n

√
a1a2 · ... · an−1an. Moreover, equality holds (VI) .

(b) Consider the statement (T ):
(T ) Let x1, x2, · · · , xk be positive real numbers, and r1, r2, · · · , rk be positive rational numbers. Suppose r1 + r2 +

· · ·+ rk = 1. Then r1x1 + r2x2 + · · ·+ rkxk ≥ x1
r1x2

r2 · ... · xk
rk .

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (T ), with the help of the Arithmetic-Geometric Inequality. (The ‘underline’ for
each blank bears no definite relation with the length of the answer for that blank.)

Let x1, x2, · · · , xk be positive real numbers, and r1, r2, · · · , rk be positive rational numbers.
Suppose r1 + r2 + · · ·+ rk = 1.

Since (I) are rational numbers , (II) some integers (III) such that r1 =
M1

N1
,

(IV) .
Without loss of generality, we may assume N1 = N2 = · · · = Nk. Write N = N1.
Since r1, r2, · · · , rk are (V) , we may assume, without loss of generality, that M1,M2, · · · ,Mk, N are
positive.
Since r1 + r2 + · · ·+ rk = 1, we have N (VI) .
By the Arithmetic-Geometric Inequality, we have

r1x1 + r2x2 + · · ·+ rkxk = (VII) ≥ (VIII)

(c) By applying the statement (T ), or otherwise, prove the statement (T ′):

(T ′) Suppose x1, x2, · · · , xk are positive real numbers, and s1, s2, · · · , sk are positive rational numbers.

Then s1x1 + s2x2 + · · ·+ skxk

s1 + s2 + · · ·+ sk
≥ (x1

s1x2
s2 · ... · xk

sk)
1/(s1+s2+···+sk).

7. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are
independent of each other.

(a) Suppose w, x, y, z are real numbers. Prove that w4 + x2y2 + y2z2 + z2x2

4
≥ wxyz.

(b) Let a, b, c be positive real numbers. Suppose a+ b+ c = 1. Prove that
(
1

a
− 1

)(
1

b
− 1

)(
1

c
− 1

)
≥ 8.

(c) Let n be a positive integer.
i. Prove that nn ≥ 1 · 3 · 5 · ... · (2n− 3) · (2n− 1).
ii. Hence deduce that (n2 + n)n ≥ (2n)!.

8. Here we take for granted the result (†) known as the Area Comparison Theorem in the calculus of one real variable.

(†) Let a, b be real numbers, with a ≤ b, and let f, g be real-valued functions of one real variable whose domains contain
the interval [a, b]. Suppose f, g are continuous on [a, b]. Further suppose that f(x) ≤ g(x) for any x ∈ [a, b].

Then
∫ b

a

f(t)dt ≤
∫ b

a

g(t)dt.

Let h : [0,+∞) −→ R be a continuous function. Suppose that for any x ∈ [0,+∞),

h(x) ≥ 0 and h(x) ≥ 1 +

∫ x

0

2uh(u)du.

(a) Consider the statement (J):
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(J) For any n ∈ N, h(x) ≥
n∑

j=0

x2j

j!
for any x ∈ [0,+∞).

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (J), with the help of the Area Comparison Theorem. (The ‘underline’ for each
blank bears no definite relation with the length of the answer for that blank.)

Denote by P (n) the proposition that (I) .

• For any x ∈ [0,+∞), h(x) ≥ 0.

Then, for any x ∈ [0,+∞), we have h(x) ≥ 1 +

∫ x

0

2uh(u)du ≥ (II) .

Hence P (0) is true.

• Let k ∈ N. (III)

We have h(x) ≥
k∑

j=0

u2j

j!
for any x ∈ [0,+∞).

For any x ∈ (0,+∞), we have h(x) ≥ (IV) ≥ (V)

Hence (VI) .

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

(b) Prove that h(
√
e) ≥ ee.

9. In this question, we are going to prove the existence of the limit lim
n→∞

n∑
k=1

(−1)k+1

k
and find its value.

Here we take for granted the result known as the Area Comparison Theorem in the calculus of one real variable.
We further take for granted the result (‡) knonw as the Sandwich Rule in the calculus of one real variable:

(‡) Let {un}∞n=0, {vn}∞n=0, {wn}∞n=0 be infinite sequences of real numbers. Suppose un ≤ vn ≤ wn for any n ∈ N.
Further suppose that both {un}∞n=0, {wn}∞n=0 converge in R, and converge to the same limit, say, ℓ.
Then {vn}∞n=0 converges to ℓ also.

(a)♢ Apply mathematical induction to prove that
2n∑
k=1

(−1)k+1

k
=

2n∑
k=n+1

1

k
for any positive integer n.

(b)♣ Prove the statement (♯), by considering appropriate definite integrals:

(♯) Let x be a real number. Suppose x > 1. Then ln

(
x+ 1

x

)
≤ 1

x
≤ ln

(
x

x− 1

)
.

(c) Applying the statement (♯), or otherwise, deduce that ln

(
2n+ 1

n+ 1

)
≤

2n∑
k=n+1

1

k
≤ ln(2) for any positive integer n.

(d) Hence, or otherwise, prove that the limit lim
n→∞

2n∑
k=1

(−1)k+1

k
exists and find its value.

(e)♣ Let n be a positive integer. Prove that
∣∣∣∣∣

2n∑
k=n+1

(−1)k+1

k

∣∣∣∣∣ ≤ 1

n
.

Hint.
• When n is even, group up pairs of consecutive terms in the sum, and simplify to give a sum of n/2 positive

number. Now spot which of these n/2 numbers is the largest.
• When n is odd, first leave out the first term, and then proceed in the same way described above on the rest of

the terms in the sum.

(f)♢ Hence, or otherwise, prove that the limit lim
n→∞

n∑
k=1

(−1)k+1

k
exists and find its value.

Hint. What can be said about the difference
n∑

k=1

(−1)k+1

k
−

2n∑
k=1

(−1)k+1

k
for each positive integer n?
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