1. Solution.

- (a) Take n = 3. Note that $3 \in \mathbb{N}$. Note that 3 + 2 = 5, 3 + 4 = 7. The integers 3, 5, 7 are prime numbers.
- (b) Take $x = \sqrt{2}$. Note that $x \in \mathbb{R}$. We have $x^2 2 = (\sqrt{2})^2 2 = 2 2 = 0$.

(c) Take
$$z_0 = \frac{1+i}{\sqrt{2}}$$
. Note that $z_0 \in \mathbb{C}$.
Also note that $z_0^4 = \left(\frac{1+i}{\sqrt{2}}\right)^4 = \frac{1+4i+6i^2+4i^3+i^4}{4} = \frac{1+4i-6-4i+1}{4} = 1$

2. Answer.

(a) There are many correct answers for (II), (III), ..., (IX) collectively, dependent on the choices made in (II).

(I) There exist some $x, y, z \in \mathbb{Z}$ such that each of xy, xz is divisible by 4 and xyz is not divisible by 8. (II) y = z = 1

(III) 4

(IV) 4 (V) $4 = 1 \cdot 4$ and $1 \in \mathbb{Z}$

(VI) 4

(VII) 4 were divisible by 8

- (VIII) 4 = 8k
- (IX) $\frac{1}{2}$

(b) (I) There exist some sets A, B, C such that $A \cap B \neq \emptyset$ and $A \cap B \subset C$ and $A \notin C$ and $B \notin C$. (II) $C = \{3\}$

- (III) \emptyset
- $(\mathrm{IV}) \ A \cap B \subset C$
- (V) and $1 \notin C$
- (VI) $A \notin C$
- (VII) $2 \in B$ and $2 \notin C$ (VIII) $B \notin C$

(c) (I) There exist some $x, y \in \mathbb{R}$ such that x > 0 and y > 0 and $|x^2 - 2x| < |y^2 - 2y|$ and $x^2 > y^2$. (II) y = 1

(III) x > 0 and y > 0(IV) 0 (V) $|y^2 - 2y| = 1$ (VI) $|x^2 - x|$ (VII) $|y^2 - y|$ (VIII) $x^2 = 4$ (IX) $x^2 > y^2$

(d) (I) There exist some $m, n \in \mathbb{N} \setminus \{0, 1, 2\}$, $\zeta, \omega \in \mathbb{C}$ such that $m \neq n$ and $\zeta \neq \omega$ and ζ is an *m*-th root of unity and ω is an *n*-th root of unity and $\zeta\omega$ is not an (m+n)-th root of unity.

- (II) Take
- (III) $\omega = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$ (IV) $m \neq n$ and $\zeta \neq \omega$
- (V) ζ is an *m*-th root of unity

(VI)
$$\omega^n = \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^8 = \cos\left(8\cdot\frac{\pi}{4}\right) + i\sin\left(8\cdot\frac{\pi}{4}\right) = \cos(2\pi) + i\sin(2\pi) = 1$$

(VII) 12

$$(\text{VIII}) \ (\zeta \omega)^{m+n} = \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) \right)^{12} = \cos\left(12 \cdot \frac{3\pi}{4}\right) + i\sin\left(12 \cdot \frac{3\pi}{4}\right) = \cos(9\pi) + i\sin(9\pi) = -1$$

$$(\text{IX}) \neq$$

(X) $\zeta \omega$ is not an (m+n)-th root of unity

3. Solution.

- (a) Let $z \in \mathbb{C} \setminus \{0\}$. Suppose it were true that $\operatorname{Re}(z) = 0$ and $\operatorname{Im}(z) = 0$. Then $z = \operatorname{Re}(z) + i\operatorname{Im}(z) = 0 + i \cdot 0 = 0$. Contradiction arises. Hence $\operatorname{Re}(z) \neq 0$ or $\operatorname{Im}(z) \neq 0$ in the first place.
- (b) The statement 'for any z ∈ C\{0}, Re(z) ≠ 0' is false: we have i ∈ C\{0} and Re(i) = 0. The statement 'for any w ∈ C\{0}, Im(w) ≠ 0' is also false: we have 1 ∈ C and Im(1) = 0.
 Hence the statement '(for any z ∈ C\{0}, Re(z) ≠ 0) or (for any w ∈ C\{0}, Im(w) ≠ 0)' is false.

Hence the statement '(for any $z \in \mathbb{C} \setminus \{0\}$, $\operatorname{Re}(z) \neq 0$) or (for any $w \in \mathbb{C} \setminus \{0\}$, $\operatorname{Im}(w) \neq 0$)' is false.

4. (a) Answer.

- (I) Suppose
- (II) Suppose s is not divisible by 2.
- (III) there exist some $k, r \in \mathbb{Z}$ such that s = 2k + r and $0 \le r < 2$
- (IV) s is not divisible by 2
- (V) 0 < r < 2
- (VI) $r \in \mathbb{Z}$
- (VII) s = 2k + 1

(VIII) if there exists some $k \in \mathbb{Z}$ such that s = 2k + 1 then s is not divisible by 2

(IX) Suppose it were true that s was divisible by 2.

- (X) there would exist some $\ell \in \mathbb{Z}$ such that $s = 2\ell$
- (XI) s = 2k + 1 and $s = 2\ell + 0$
- (XII) By the Division Algorithm for Integers
- $(XIII) \ 0 = 1$
- (b) —
- (c) —

5. —

6. Solution.

Let n be a positive integer.

Since n is a positive integer, we have $n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 > n^4 + n^3 + n^2 + n + 1 > 0$. Repeatedly applying Division Algorithm, we obtain:

$$\begin{cases} n^{7} + n^{6} + n^{5} + n^{4} + n^{3} + n^{2} + n + 1 &= n^{3}(n^{4} + n^{3} + n^{2} + n + 1) + (n^{2} + n + 1) \\ n^{4} + n^{3} + n^{2} + n + 1 &= n^{2}(n^{2} + n + 1) + (n + 1) \\ n^{2} + n + 1 &= n(n + 1) + 1 \end{cases}$$

Since n is a positive integer, we indeed have the inequalities $n^4 + n^3 + n^2 + n + 1 > n^2 + n + 1 > n + 1 > 1 > 0$. Hence the greatest common divisor of $n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1$ and $n^4 + n^3 + n^2 + n + 1$ is 1.

7. —

8. (a) **Answer.**

- (I) Suppose a, c are relatively prime and ab is divisible by c
- (II) ab is divisible by c
- (III) $k \in \mathbb{Z}$
- (IV) gcd(a, c) = 1

(V) there exist some $s, t \in \mathbb{Z}$ (VI) sa + tc(VII) gcd(a, c)(VIII) (sa + tc)b = sab + tbc = skc + tbc = (sk + tb)c(IX) sk + tb(X) b is divisible by c

(b) i. —

ii. Hint.

Apply the result in part (b.i).

iii. ——

iv. Hint.

Apply the result in part (b.iii).

v. —

9. (a) i. —

- ii. ——
- iii. ——
- iv. ——
- v. *Hint*.

You may find the equality xy - uv = x(y - v) + (x - u)v useful. (Or you may choose xy - uv = (x - u)y + u(y - v) as an alternative.)

(b) —

(c) **Answer.**

- i. The solutions of the equation $3x \equiv 1 \pmod{5}$ are given by $x \equiv 2 \pmod{5}$.
- ii. The solutions of the equation $6x \equiv 4 \pmod{7}$ are given by $x \equiv 3 \pmod{7}$.
- iii. The solutions of the equation $4x \equiv 2 \pmod{9}$ are given by $x \equiv 5 \pmod{9}$.
- (d) Answer.
 - i. The only solutions of the equation $4x \equiv 2 \pmod{6}$ are given by $x \equiv 2 \pmod{3}$.
 - ii. The equation $4x \equiv 1 \pmod{6}$ has no solution.