
MATH1050 Assignment 4 (Answers and selected solutions)

1. Solution.

(a) Denote by P (n) the proposition

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ n(3n− 1) = n2(n+ 1).

• Note that 1 · 2 = 2 = 12(1 + 1). Then P (1) is true.
• Let k be a positive integer. Suppose P (k) is true. Then

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ k(3k − 1) = k2(k + 1).

We verify that P (k + 1) is true:
We have

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ k(3k − 1) + (k + 1)[3(k + 1)− 1]

= k2(k + 1) + (k + 1)(3k + 2) = (k + 1)[k2 + (3k + 2)] = · · · = (k + 1)2[(k + 1) + 1]

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

(b) Denote by P (n) the proposition

1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
≥

√
n.

• We have 1 ≥
√
1. Hence P (1) is true.

• Let k be a positive integer. Suppose P (k) is true. Then 1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
≥

√
k.

We verify that P (k + 1) is true:

1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

≥
√
k +

1√
k + 1

=

√
k ·

√
k + 1 + 1√
k + 1

≥
√
k ·

√
k + 1√

k + 1

=
√
k + 1

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true whenever n is a positive integer.

(c) Denote by P (n) the proposition
n2 < 2n−1.

• We have 72 = 49 < 64 = 27− 1. Then P (7) is true.
• Let k be an integer greater than 6. Suppose P (k) is true. Then k2 < 2k−1. Therefore 2k−1 > 2k.

We have

2(k+1)−1 − (k + 1)2 = 2k − (k2 + 2k + 1)

≥ 2k − k2 − 2k − k

= 2k − k2 − 3k

≥ 2kk2 − k · k = 2(2k−1 − k2) >≥ 0.

Then (k + 1)2 < 2(k+1)−1. Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true whenever k is an integer greater than 6.
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(d) Denote by P (n) the proposition that n(n2 + 2) is divisible by 3.

• We have 0 · (02 + 2) = 0 = 3 · 0 and 0 ∈ Z. Hence 0 · (02 + 2) is divisible by 3.
Then P (0) is true.

• Let k be a positive integer. Suppose P (k) is true. Then k(k2 +2) is divisible by 3. Therefore there exists some
q ∈ Z such that k(k2 + 2) = 3q.
We verify that P (k + 1) is true:
We have

(k + 1)[(k + 1)2 + 2] = k3 + 3k2 + 5k + 3 = k(k2 + 2) + 3k2 + 3 = 3q + 3k2 + 3 = 3(q + k2 + 1).

Note that q + k2 + 1 ∈ Z. Then (k + 1)[(k + 1)2 + 2] is divisible by 3.
Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

(e) Denote by P (n) the proposition that 7n(3n+ 1)− 1 is divisible by 9.

• We have 70(3 · 0 + 1)− 1 = 0. 0 is divisible by 9. Then P (0) is true.
• Let k ∈ N. Suppose P (k) is true. Then 7k(3k+1)− 1 is divisible by 9. Therefore there exists some q ∈ Z such

that 7k(3k + 1)− 1 = 9q.
We verify that P (k + 1) is true:

7k+1[3(k + 1) + 1]− 1 = 7 · 7k[(3k + 1) + 3]− 1

= 7 · 7k(3k + 1) + 3 · 7k+1 − 1

= 7 · [7k(3k + 1)− 1] + 3(7k+1 − 1) + 9

= 7 · 9q + 3(7− 1)

k∑
j=0

7j + 9 = 9

7q + 2

k∑
j=0

7j + 1



Since q ∈ Z and k ∈ N, we have 7q + 2

k∑
j=0

7j + 1 ∈ Z. Therefore 7k+1[3(k + 1) + 1]− 1 is divisible by 9.

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

2. (a) i. Answer.

(I)
n∑

k=0

(ak+1 − ak) = an+1 − a0

(II)
0∑

k=0

(ak+1 − ak) = a1 − a0 = a0+1 − a0.

(III) Suppose P (m) is true
(IV) am+1 − a0

(V)
m+1∑
k=0

(ak+1 − ak) =

m∑
k=0

(ak+1 − ak) + (am+2 − am+1) = (am+1 − a0) + (am+2 − am+1) = am+2 − a0 =

a(m+1)+1 − a0.
(VI) By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

ii. ——
(b) Solution.

Let {cn}∞n=0 be an infinite sequence of numbers. Let α, β be numbers, with α ̸= 1. Suppose cn+1 = αcn + β for
each n ∈ N.
For each n ∈ N, define an =

cn
αn

.

Then by definition, for each n ∈ N, we have an+1 =
cn

αn+1
=

αcn + β

αn+1
=

cn
αn

+
β

αn+1
= an +

β

αn+1
.
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By the result described in the statement (A), for each n ∈ N, we have

an+1 − a0 =

n∑
k=0

(ak+1 − ak) =

n∑
k=0

β

αk+1
= α−n−1β

n∑
k=0

αk = α−n−1β · 1− αn+1

1− α

Therefore

cn+1 − αn+1c0 = αn+1an+1 − αn+1a0 = αn+1(an+1 − a0) =
β(1− αn+1)

1− α
.

Remark. The key step in the application of the telescopic method is displayed below:
By assumption, for each n, we have

cn+1 − α cn = β

α cn − α2 cn−1 = βα

α2 cn−1 − α3 cn−2 = βα2

...
...

...
αn−2 c3 − αn−1 c2 = βαn−2

αn−1 c2 − αn c1 = βαn−1

αn c1 − αn+1 c0 = βαn

Then cn+1 − αn+1c0 =

n∑
k=0

αn−kβ =

n∑
j=0

αjβ =
β(1− αn+1)

1− α
.

(c) i. ——
ii. Solution.

Let θ ∈ R. Suppose sin

(
θ

2

)
̸= 0. Pick any n ∈ N.

(
1 + 2

n∑
k=1

cos(kθ)

)
sin

(
θ

2

)
= sin

(
θ

2

)
+

n∑
k=1

2 cos(kθ) sin

(
θ

2

)

= sin

(
θ

2

)
+

n∑
k=1

(
sin

(
(k +

1

2
)θ

)
− sin

(
(k − 1

2
)θ

))

= sin

(
(n+

1

2
)θ

)

By assumption sin(
θ

2
) ̸= 0. Then = 1 + 2

n∑
k=1

cos(kθ) =
sin((n+ 1/2)θ)

sin(θ/2)
.

iii. ——
iv. ——

3. Answer.

(a) (I) Suppose
n∑

j=0

aj =

(
1 + an

2

)2

for each n ∈ N.

(II) an = 2n+ 1.

(III) We have a0 =

0∑
j=0

aj =

(
1 + a0

2

)2

=
1

4
(1 + 2a0 + a0

2). Then (a0 − 1)2 = a0
2 − 2a0 + 1 = 0. Therefore

a0 = 1 = 2 · 0 + 1.
(IV) Let k ∈ N. Suppose P (k) is true.
(V) We have

(
1 + ak+1

2

)2

=

k+1∑
j=0

aj =

k∑
j=0

aj + ak+1 =

(
1 + ak

2

)2

+ ak+1 =

[
1 + (2k + 1)

2

]2
+ ak+1 = (k + 1)2 + ak+1.
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Then 1

4
(1 + 2ak+1 + ak+1

2) = (k + 1)2 + ak+1.

Therefore (ak+1 − 1)2 = ak+1
2 − 2ak+1 + 1 = (2k + 2)2.

Hence ak+1 = 2k + 3 or ak+1 = −2k − 1. Since ak+1 > 0, we have ak+1 = 2k + 3 = 2(k + 1) + 1.
(VI) By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

(b) (I) Let α, β are the two distinct roots of the polynomial f(x) = x2 − x − 1. Suppose {an}∞n=1 is the infinite
sequence of real numbers defined by{

a1 = 1, a2 = 3,

an+2 = an+1 + an if n ≥ 1
.

(II) 1 = −(−1) = α+ β

(III) 3 = [−(−1)]2 − 2(−1) = (α+ β)2 − 2αβ = α2 + β2

(IV) Let k be a positive integer. Suppose P (k) is true.
(V) αk+1 + βk+1

(VI) P (k)

(VII) ak+2 = ak+1+ak = (αk+1+βk+1)+ (αk +βk) = αk(α+1)+βk(β+1) = αk ·α2+βk ·β2 = αk+2+βk+2.
(VIII) By the Principle of Mathematical Induction, P (n) is true for each positive integer n.

4. (a) Answer.

i. (I) |µ|2 + |ν|2 + 2|µ| · |ν| − (µ+ ν)(µ+ ν) = |µ|2 + |ν|2 + 2|µ| · |ν| − µµ− νν − µν − µν

(II) (Re(µν))2

(III) (Re(µν))2 + (Im(µν))2

(IV) |µ+ ν|2 ≤ (|µ|+ |ν|)2

(V) |µ|+ |ν| ≥ 0

ii. (I) Suppose µ1, · · · , µn ∈ C.

(II)

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj |.

(III) P (2) is true
(IV) Let k ∈ N\{0, 1}. Suppose P (k) is true.
(V) ν1, · · · , νk, νk+1 be complex numbers
(VI) ∣∣∣∣∣∣

k+1∑
j=1

νj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

k∑
j=1

νj + νk+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
j=1

νj

∣∣∣∣∣∣+ |νk+1| ≤
k∑

j=1

|νj |+ |νk+1| ≤
k+1∑
j=1

|νj |

(VII) the Principle of Mathematical Induction
(b) Solution.

Let ζ ∈ C. Suppose 0 < |ζ| < 1. Then we have∣∣∣∣∣
4060∑

k=1050

ζk

∣∣∣∣∣ ≤
4060∑

k=1050

∣∣ζk∣∣ = 4060∑
k=1050

|ζ|k = |ζ|1050 ·
3010∑
k=0

|ζ|k = |ζ|1050 · 1− |ζ|3011

1− |ζ|
<

|ζ|1050

1− |ζ|
.

The first inequality is a consequence of Statement (T ).
The last inequality follows from |ζ|1050 > 0 and 0 < |ζ|3011 < 1.

5. Answer.

(a) (I) r = a+ b
√
2 and r = a′ + b′

√
2

(II) a = a′ and b = b′

(III) and r = a′ + b′
√
2
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(IV) (b− b′)
√
2

(V) Suppose it were true that b ̸= b′

(VI)
√
2 =

a′ − a

b− b′

(VII)
√
2 would be a rational number

(VIII) b = b′

(b) (I) ζ ∈ C\R and η ∈ C

(II) For any a, a′, b, b′ ∈ R, if η = aζ + bζ2 and η = a′ζ + b′ζ2 then a = a′ and b = b′.
(III) Pick any a, a′, b, b′ ∈ R.
(IV) Suppose
(V) η = a′ζ + b′ζ2

(VI) ζ ̸= 0

(VII) a′ − a

(VIII) Suppose it were true that b ̸= b′

(IX) a′ − a

b− b′

(X) real
(XI) ζ is not real
(XII) a′ = a

(c) (I) Suppose r ∈ R.
(II) For any n, n′ ∈ Z, if n ≤ r < n+ 1 and n′ ≤ r < n′ + 1 then n = n′.
(III) Pick any n, n′ ∈ Z. Suppose n ≤ r < n+ 1 and n′ ≤ r < n′ + 1.
(IV) (r − n′)− (r − n) < 1− 0

(V) (r − n′)− (r − n) > 0− 1

(VI) n, n′ are integers
(VII) an integer
(VIII) only
(IX) 0

(X) n− n′ = 0
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