
MATH1050 Assignment 4

1. Apply mathematical induction to justify each of the statements below:

(a) 1 · 2 + 2 · 5 + 3 · 8 + · · ·+ n(3n− 1) = n2(n+ 1) for any positive integer n.

(b) 1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
≥

√
n whenever n is a positive integer.

(c) n2 < 2n−1 whenever n is an integer greater than 6.

(d) n(n2 + 2) is divisible by 3 for any n ∈ N.
(e) 7n(3n+ 1)− 1 is divisible by 9 for any n ∈ N.

2. (a) i. Consider the statement (A):

(A) Suppose {an}∞n=0 is an infinite sequence of complex numbers. Then
n∑

k=0

(ak+1 − ak) = an+1 − a0.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so
that they give a proof for the statement (A). (The ‘underline’ for each blank bears no definite relation with the
length of the answer for that blank.)

Suppose {an}∞n=0 is an infinite sequence of complex numbers.
Denote by P (n) the proposition (I) .

• We verify that P (0) is true:

(II)
Hence P (0) is true.

• Let m ∈ N. (III) . Then
m∑

k=0

(ak+1 − ak) = (IV) .

We verify P (m+ 1):

(V)
Hence P (m+ 1) is true.

(VI)

ii. Prove the statement (B):
(B) Suppose {an}∞n=0 is an infinite sequence of complex numbers. Further suppose aj ̸= 0 for each j ∈ N. Then

n∏
k=0

ak+1

ak
=

an+1

a0
.

Remarks. The statements (A), (B) give the mechanism for a useful method for computing sums/products of
consecutive terms of sequences. This method is known as the Telescopic Method.

(b)♢ Apply the result described in the statement (A) to prove the statement (♯):
(♯) Let {cn}∞n=0 be an infinite sequence of numbers. Let α, β be numbers, with α ̸= 1. Suppose cn+1 = αcn + β for

each n ∈ N. Then cn = αnc0 +
β(1− αn)

1− α
for each n ≥ 1.

(c) Prove the statements below. (The Telescopic Method may be useful.)

i. Let θ ∈ R. Suppose sin(θ) ̸= 0. Then cos(θ) cos(2θ) cos(22θ) · ... · cos(2nθ) = sin(2n+1θ)

2n+1 sin(θ)
for any n ∈ N.

ii. Let θ ∈ R. Suppose sin

(
θ

2

)
̸= 0. Then 1 + 2

n∑
k=1

cos(kθ) =
sin((n+ 1/2)θ)

sin(θ/2)
for any n ∈ N.

iii. Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=0

2k tan(2kθ) = cot(θ)− 2n+1 cot(2n+1θ) for any n ∈ N.

iv. Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=1

csc(2kθ) = cot(θ)− cot(2nθ) for any n ∈ N\{0}.
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3. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they
give respectively a proof for the statement (E) and a proof for the statement (F ). (The ‘underline’ for each blank bears
no definite relation with the length of the answer for that blank.)

(a) We prove the statement (E):

(E) Let {an}∞n=0 be an infinite sequence of positive real numbers. Suppose
n∑

j=0

aj =

(
1 + an

2

)2

for each n ∈ N.

Then an = 2n+ 1 for each n ∈ N.

Let {an}∞n=0 be an infinite sequence of positive real numbers. (I)
Denote by P (n) the proposition below:

(II)

• We verify that P (0) is true:

(III)
Hence P (0) is true.

• (IV)
We verify that P (k + 1) is true:

(V)
Therefore P (k + 1) is true.

(VI)

(b) We prove the statement (F ):
(F ) Let α, β are the two distinct roots of the polynomial f(x) = x2−x−1. Suppose {an}∞n=1 is the infinite sequence

of real numbers defined by {
a1 = 1, a2 = 3,

an+2 = an+1 + an if n ≥ 1
.

Then an = αn + βn for each positive integer n.

(I)
Denote by P (n) the proposition below:

an = αn + βn and an+1 = αn+1 + βn+1.

• We verify that P (1) is true:

We have a1 = (II) .
We also have a2 = (III) .
Hence P (1) is true.

• (IV)

Then ak = αk + βk, and ak+1 = αk+1 + βk+1.
We verify that P (k + 1) is true:

We have ak+1 = (V) by (VI) immediately.
Now we verify that a(k+1)+1 = α(k+1)+1 + β(k+1)+1:

(VII)
Therefore P (k + 1) is true.

(VIII)

4. (a) Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so
that they give respectively a proof for the statement (K), and a proof for the statement (L). Both statements are
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referred to as (the ‘inequality part’ of) the Triangle Inequality for complex numbers. (The ‘underline’ for
each blank bears no definite relation with the length of the answer for that blank.)

i. We prove the statement (K):
(K) Suppose µ, ν ∈ C. Then |µ+ ν| ≤ |µ|+ |ν|.

Suppose µ, ν ∈ C. We have

(|µ|+ |ν|)2 − |µ+ ν|2 = (I)
= 2|µν| − 2Re(µν)
= 2(|µν| − Re(µν)) ——(⋆)

Note that (II) ≤ (III) = |µν|2.
Then Re(µν) ≤ |Re(µν)| ≤ |µν|. Therefore |µν| − Re(µν) ≥ 0.
Then by (⋆), (IV) .
Since |µ+ ν| ≥ 0 and (V) , we have |µ+ ν| ≤ |µ|+ |ν|.

ii. We prove the statement (L):

(L) Let n ∈ N\{0, 1}. Suppose µ1, µ2, · · · , µn ∈ C. Then

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj |.

Denote by P (n) the proposition below:

(I) . Then (II) .

• By the statement (L), (III) .

• (IV)

We verify that P (k + 1) is true:

Suppose (V) . Then (VI)
Therefore P (k + 1) is true.

By (VII) , P (n) is true for any n ∈ N\{0, 1}.

(b) By applying the results above, or otherwise, prove the statement (♯) below:

(♯) Let ζ ∈ C. Suppose 0 < |ζ| < 1. Then
∣∣∣∣∣

4060∑
k=1050

ζk

∣∣∣∣∣ < |ζ|1050

1− |ζ|
.

5. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (U), a proof for the statement (V ), and a proof for the statement (W ). (The ‘underline’
for each blank bears no definite relation with the length of the answer for that blank.)

(a) We prove the statement (U).

(U) Suppose r is a real number. Then there are at most one rational number a and at most one rational number b

satisfying r = a+ b
√
2.
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Suppose r is a real number.

[The desired conclusion is: ‘there are at most one rational number a and at most one rational
number b satisfying r = a+ b

√
2.’ It can be re-formulated as:

‘For any a, a′, b, b′ ∈ Q, if (I) then (II) .’]

Pick any a, a′, b, b′ ∈ Q. Suppose r = a+ b
√
2 (III) .

Then we have a+ b
√
2 = a′ + b′

√
2. Therefore (IV) = a′ − a.

We verify that b = b′with the help of proof-by-contradiction:

∗ (V) .

Then b− b′ ̸= 0. We would have (VI) .

Since a, a′, b, b′ are rational numbers, (VII) . However,
√
2 is an irra-

tional number. Contradiction arises.

Now we have verified that (VIII) . Then a′ − a = (b− b′)
√
2 = 0. Therefore a = a′.

(b) We prove the statement (V ):

(V ) Suppose ζ ∈ C\R, and η ∈ C. Then there are at most one a ∈ R and at most one b ∈ R satisfying η = aζ + bζ2.

Suppose (I) .

[The desired conclusion is: ‘there are at most one a ∈ R and at most one b ∈ R satisfying
η = aζ + bζ2.’ It can be re-formulated as:
‘ (II) ’]

(III) .
(IV) η = aζ + bζ2 and (V) . Then aζ + bζ2 = a′ζ + b′ζ2.

Since ζ /∈ R, we have (VI) in particular. Then a+bζ = a′+b′ζ. Therefore (b−b′)ζ = (VII) .
We verify b = b′ with the help of proof-by-contradiction:

∗ (VIII) .

Then b− b′ ̸= 0. Therefore ζ = (IX) .

Since a, a′, b, b′ are real, ζ would be (X) . However, by assumption, (XI) .
Contradiction arises.

Now we have verified that b = b′. Then a′ − a = (b− b′)ζ = 0. Therefore (XII) also.

(c) We prove the statement (W ):

(W ) Suppose r ∈ R. Then there is at most one integer n satisfying n ≤ r < n+ 1.

(I)

[The desired conclusion to be deduced is: ‘there is at most one integer n satisfying n ≤ r <
n+ 1.’ It can be re-formulated as:
‘ (II) ’]

(III)
Then 0 ≤ r − n < 1 and 0 ≤ r − n′ < 1.
Therefore n− n′ = (IV) = 1.
Also, n− n′ = (V) = −1.
Hence −1 < n− n′ < 1.
By assumption, (VI) . Then n− n′ is also (VII) .
The (VIII) integer strictly between −1, 1 is (IX) . Then (X) . Therefore n = n′.
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