MATH1050 Assignment 4

- 1. Apply mathematical induction to justify each of the statements below:
 - (a) $1 \cdot 2 + 2 \cdot 5 + 3 \cdot 8 + \dots + n(3n-1) = n^2(n+1)$ for any positive integer *n*.
 - (b) $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$ whenever *n* is a positive integer.
 - (c) $n^2 < 2^{n-1}$ whenever n is an integer greater than 6.
 - (d) $n(n^2+2)$ is divisible by 3 for any $n \in \mathbb{N}$.
 - (e) $7^n(3n+1) 1$ is divisible by 9 for any $n \in \mathbb{N}$.
- 2. (a) i. Consider the statement (A):
 - (A) Suppose $\{a_n\}_{n=0}^{\infty}$ is an infinite sequence of complex numbers. Then $\sum_{k=0}^{n} (a_{k+1} a_k) = a_{n+1} a_0$.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give a proof for the statement (A). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)

- ii. Prove the statement (B):
 - (B) Suppose $\{a_n\}_{n=0}^{\infty}$ is an infinite sequence of complex numbers. Further suppose $a_j \neq 0$ for each $j \in \mathbb{N}$. Then $\prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = \frac{a_{n+1}}{a_0}.$

Remarks. The statements (A), (B) give the mechanism for a useful method for computing sums/products of consecutive terms of sequences. This method is known as the **Telescopic Method**.

- (b) \diamond Apply the result described in the statement (A) to prove the statement (\sharp):
 - (#) Let $\{c_n\}_{n=0}^{\infty}$ be an infinite sequence of numbers. Let α, β be numbers, with $\alpha \neq 1$. Suppose $c_{n+1} = \alpha c_n + \beta$ for each $n \in \mathbb{N}$. Then $c_n = \alpha^n c_0 + \frac{\beta(1-\alpha^n)}{1-\alpha}$ for each $n \geq 1$.
- (c) Prove the statements below. (The Telescopic Method may be useful.)
 - i. Let $\theta \in \mathbb{R}$. Suppose $\sin(\theta) \neq 0$. Then $\cos(\theta) \cos(2\theta) \cos(2^2\theta) \cdot \ldots \cdot \cos(2^n\theta) = \frac{\sin(2^{n+1}\theta)}{2^{n+1}\sin(\theta)}$ for any $n \in \mathbb{N}$.
 - ii. Let $\theta \in \mathbb{R}$. Suppose $\sin\left(\frac{\theta}{2}\right) \neq 0$. Then $1 + 2\sum_{k=1}^{n} \cos(k\theta) = \frac{\sin((n+1/2)\theta)}{\sin(\theta/2)}$ for any $n \in \mathbb{N}$.

iii. Let $\theta \in \mathbb{R}$. Suppose $\sin(2^p\theta) \neq 0$ for any $p \in \mathbb{N}$. Then $\sum_{k=0}^{n} 2^k \tan(2^k\theta) = \cot(\theta) - 2^{n+1} \cot(2^{n+1}\theta)$ for any $n \in \mathbb{N}$.

iv. Let
$$\theta \in \mathbb{R}$$
. Suppose $\sin(2^p\theta) \neq 0$ for any $p \in \mathbb{N}$. Then $\sum_{k=1}^{n} \csc(2^k\theta) = \cot(\theta) - \cot(2^n\theta)$ for any $n \in \mathbb{N} \setminus \{0\}$.

- 3. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (E) and a proof for the statement (F). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)
 - (a) We prove the statement (E):
 - (E) Let $\{a_n\}_{n=0}^{\infty}$ be an infinite sequence of positive real numbers. Suppose $\sum_{j=0}^{n} a_j = \left(\frac{1+a_n}{2}\right)^2$ for each $n \in \mathbb{N}$.

Then $a_n = 2n + 1$ for each $n \in \mathbb{N}$.

(b) We prove the statement (F):

(F) Let α, β are the two distinct roots of the polynomial $f(x) = x^2 - x - 1$. Suppose $\{a_n\}_{n=1}^{\infty}$ is the infinite sequence of real numbers defined by

$$\begin{cases} a_1 = 1, & a_2 = 3, \\ & a_{n+2} = a_{n+1} + a_n & \text{if } n \ge 1 \end{cases}$$

Then $a_n = \alpha^n + \beta^n$ for each positive integer n.

4. (a) Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they give respectively a proof for the statement (K), and a proof for the statement (L). Both statements are

referred to as (the 'inequality part' of) the **Triangle Inequality for complex numbers**. (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank*.)

- i. We prove the statement (K):
 - (K) Suppose $\mu, \nu \in \mathbb{C}$. Then $|\mu + \nu| \le |\mu| + |\nu|$.

Suppose $\mu, \nu \in \mathbb{C}$. We have						
($\mu + \nu)^2$	$- \mu + \nu ^2$	=	(I)		
			=	$\overline{2 \mu\overline{ u} - 2Re(\mu\overline{ u})}$		
			=	$2(\mu\overline{ u} - \operatorname{Re}(\mu\overline{ u})) (\star)$		
Note that	(II)	_ ≤	(III)	$_= \mu\overline{\nu} ^2.$		
Then $\operatorname{Re}(\mu\overline{\nu}) \leq \operatorname{Re}(\mu\overline{\nu}) \leq \overline{\mu}\overline{\nu} $. Therefore $ \mu\overline{\nu} - \operatorname{Re}(\mu\overline{\nu}) \geq 0$.						
Then by (\star) ,		(IV)				
Since $ \mu + \nu $	≥ 0 and	(V)	, w	ve have $ \mu + \nu \le \mu + \nu $.		

ii. We prove the statement (L):

(L) Let
$$n \in \mathbb{N} \setminus \{0, 1\}$$
. Suppose $\mu_1, \mu_2, \cdots, \mu_n \in \mathbb{C}$. Then $\left| \sum_{j=1}^n \mu_j \right| \le \sum_{j=1}^n |\mu_j|$.

(b) By applying the results above, or otherwise, prove the statement (\sharp) below:

(#) Let
$$\zeta \in \mathbb{C}$$
. Suppose $0 < |\zeta| < 1$. Then $\left| \sum_{k=1050}^{4060} \zeta^k \right| < \frac{|\zeta|^{1050}}{1 - |\zeta|}$.

- 5. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (U), a proof for the statement (V), and a proof for the statement (W). (*The 'underline'* for each blank bears no definite relation with the length of the answer for that blank.)
 - (a) We prove the statement (U).
 - (U) Suppose r is a real number. Then there are at most one rational number a and at most one rational number b satisfying $r = a + b\sqrt{2}$.

Suppose r is a real number. [The desired conclusion is: 'there are at most one rational number a and at most one rational number b satisfying $r = a + b\sqrt{2}$.' It can be re-formulated as: 'For any $a, a', b, b' \in \mathbb{Q}$, if _______ then ______.'] Pick any $a, a', b, b' \in \mathbb{Q}$. Suppose $r = a + b\sqrt{2}$ ________. Then we have $a + b\sqrt{2} = a' + b'\sqrt{2}$. Therefore _________. We verify that b = b' with the help of proof-by-contradiction: * _______. Then $b - b' \neq 0$. We would have ______. Since a, a', b, b' are rational numbers, ______. Now we have verified that ______. Then $a' - a = (b - b')\sqrt{2} = 0$. Therefore a = a'.

- (b) We prove the statement (V):
 - (V) Suppose $\zeta \in \mathbb{C} \setminus \mathbb{R}$, and $\eta \in \mathbb{C}$. Then there are at most one $a \in \mathbb{R}$ and at most one $b \in \mathbb{R}$ satisfying $\eta = a\zeta + b\zeta^2$.

Suppose (I)
[The desired conclusion is: 'there are at most one $a \in \mathbb{R}$ and at most one $b \in \mathbb{R}$ satisfying $\eta = a\zeta + b\zeta^2$.' It can be re-formulated as: (II) ']
(III)
(IV) $\eta = a\zeta + b\zeta^2$ and (V). Then $a\zeta + b\zeta^2 = a'\zeta + b'\zeta^2$.
Since $\zeta \notin \mathbb{R}$, we have (VI) in particular. Then $a+b\zeta = a'+b'\zeta$. Therefore $(b-b')\zeta =$ (VII).
We verify $b = b'$ with the help of proof-by-contradiction:
* (VIII)
Then $b - b' \neq 0$. Therefore $\zeta = (IX)$.
Since a, a', b, b' are real, ζ would be(X) However, by assumption,(XI) Contradiction arises.
Now we have verified that $b = b'$. Then $a' - a = (b - b')\zeta = 0$. Therefore (XII) also.

- (c) We prove the statement (W):
 - (W) Suppose $r \in \mathbb{R}$. Then there is at most one integer n satisfying $n \leq r < n + 1$.