1. Solution.

- (a) Suppose ζ, η are complex numbers. We have $\zeta \eta = (\operatorname{Re}(\zeta) + i\operatorname{Im}(\zeta))(\operatorname{Re}(\eta) + i\operatorname{Im}(\eta)) = (\operatorname{Re}(\zeta)\operatorname{Re}(\eta) - \operatorname{Im}(\zeta)\operatorname{Im}(\eta)) + i(\operatorname{Re}(\zeta)\operatorname{Im}(\eta) + \operatorname{Im}(\zeta)\operatorname{Re}(\eta)).$ Then $\overline{\zeta \eta} = (\operatorname{Re}(\zeta)\operatorname{Re}(\eta) - \operatorname{Im}(\zeta)\operatorname{Im}(\eta)) - i(\operatorname{Re}(\zeta)\operatorname{Im}(\eta) + \operatorname{Im}(\zeta)\operatorname{Re}(\eta)).$ We have $\overline{\zeta} \cdot \overline{\eta} = (\operatorname{Re}(\zeta) - i\operatorname{Im}(\zeta))(\operatorname{Re}(\eta) - i\operatorname{Im}(\eta)) = (\operatorname{Re}(\zeta)\operatorname{Re}(\eta) - \operatorname{Im}(\zeta)\operatorname{Im}(\eta)) - i(\operatorname{Re}(\zeta)\operatorname{Im}(\eta) + \operatorname{Im}(\zeta)\operatorname{Re}(\eta)).$ Therefore $\overline{\zeta \eta} = \overline{\zeta} \cdot \overline{\eta}.$
- (b) Suppose ζ is a complex numbers. Then $\zeta \overline{\zeta} = (\operatorname{Re}(\zeta) + i\operatorname{Im}(\zeta))(\operatorname{Re}(\zeta) - i\operatorname{Im}(\zeta)) = (\operatorname{Re}(\zeta))^2 + (\operatorname{Im}(\zeta))^2 = |\zeta|^2$.
- (c) Let ζ, η be complex numbers. Suppose $\eta \neq 0$. Then $\frac{\zeta}{\eta} = \frac{\zeta \bar{\eta}}{\eta \bar{\eta}} = \frac{\zeta \bar{\eta}}{|\eta|^2}$.
- (d) Suppose ζ, η are complex numbers.

Then $|\zeta\eta|^2 = (\zeta\eta) \cdot (\overline{\zeta\eta}) = \zeta\eta \cdot \overline{\zeta} \cdot \overline{\eta} = (\zeta\overline{\zeta})(\eta\overline{\eta}) = |\zeta|^2 |\eta|^2$. Since $|\zeta| \ge 0$, $|\eta| \ge 0$ and $|\zeta\eta| \ge 0$, we have $|\zeta\eta| = |\zeta| \cdot |\eta|$.

2. Solution.

Let
$$\omega = \frac{\sqrt{3} + i}{2}$$
.
(a) $\omega^2 = \frac{1 + \sqrt{3}i}{2}, \, \omega^3 = i, \, \omega^{11} = \frac{\sqrt{3} - i}{2}, \, \omega^{12} = 1$.
(b) $\sum_{k=0}^{2230} \omega^{k+1} = \omega \sum_{k=0}^{2230} \omega^k = \omega \cdot \frac{1 - \omega^{2231}}{1 - \omega} = \omega \cdot \frac{1 - \omega^{-1}}{1 - \omega} = -1$

3. Answer.

(a)
$$|z|^2 = \frac{1+c}{1-c}$$
.
(b) $c = \frac{z\bar{z}-1}{z\bar{z}+1}$.
 $a = \frac{z+\bar{z}}{z\bar{z}+1}$.
 $b = \frac{z-\bar{z}}{i(z\bar{z}+1)}$.

4. (a) **Answer.**

(I)
$$(z+w)(\bar{z}+\bar{w}) = z\bar{z} + w\bar{w} + z\bar{w} + \bar{z}w = |z|^2 + |w|^2 + z\bar{w} + \bar{z}w$$

(II) $|z|^2 + |-w|^2 + z\overline{(-w)} + \bar{z}(-w) = |z|^2 + |w|^2 - z\bar{w} - \bar{z}w$
(III) $2|z|^2 + 2|w|^2 + z\bar{w} + \bar{z}w - z\bar{w} - \bar{z}w = 2|z|^2 + 2|w|^2$

(b) Answer.

(I) r, s, t are complex numbers

- (II) $2|r-s|^2 + 2|r-t|^2 |(r-s) (r-t)|^2$
- (III) $2|s-t|^2 + 2|r-s|^2 |t-r|^2$
- (IV) $|2t r s|^2 = 2|t r|^2 + 2|s t|^2 |r s|^2$
- (V) $3(|s-t|^2 + |t-r|^2 + |r-s|^2)$

(c) Solution.

Let ζ, α, β be complex numbers. Suppose $\zeta^2 = \alpha^2 + \beta^2$. By the Parallelogramic Identity, we have $|\zeta + \alpha|^2 + |\zeta - \alpha|^2 = 2|\zeta|^2 + 2|\alpha|^2$. Then

$$\begin{aligned} (|\zeta + \alpha| + |\zeta - \alpha|)^2 &= |\zeta + \alpha|^2 + |\zeta - \alpha|^2 + 2|\zeta + \alpha||\zeta - \alpha| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|(\zeta + \alpha)(\zeta - \alpha)| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|\beta^2| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|\beta|^2 \end{aligned}$$

Modifying the above argument (by interchanging the roles played by α and β), we have $(|\zeta + \beta| + |\zeta - \beta|)^2 = 2|\zeta|^2 + 2|\beta|^2 + 2|\alpha|^2$.

Therefore $(|\zeta + \alpha| + |\zeta - \alpha|)^2 = (|\zeta + \beta| + |\zeta - \beta|)^2$.

Note that $|\zeta + \alpha| + |\zeta - \alpha| \ge 0$ and $|\zeta + \beta| + |\zeta - \beta| \ge 0$. Then $|\zeta + \alpha| + |\zeta - \alpha| = |\zeta + \beta| + |\zeta - \beta|$.

5. Answer.

- (a) $|\alpha| = 2.$
- (b) $\alpha = \sqrt{2} + \sqrt{2}i$ or $\alpha = \sqrt{2} \sqrt{2}i$ or $\alpha = -\sqrt{2} + \sqrt{2}i$ or $\alpha = -\sqrt{2} \sqrt{2}i$.

6. Answer.

z = 2 or z = 4 + 2i.

7. Answer.

- (a) 2+2i, 4i
- (b) $\sqrt{2}$
- (c) -1+i

8. Answer.

(a)
$$z = 2 \cdot \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)$$

(b) i. $-2^{2019} + 2^{2019} \cdot \sqrt{3}i$
ii. $\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i, -\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i.$

9. Solution.

Let
$$\zeta = \sin(\frac{2\pi}{3}) + i\cos(\frac{2\pi}{3}).$$

(a) $\zeta = \cos(\frac{\pi}{2} - \frac{2\pi}{3}) + i\sin(\frac{\pi}{2} - \frac{2\pi}{3}) = \cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}).$

(b) The three cubic roots of ζ are given by β_1 , β_2 , β_3 , given by

$$\begin{aligned} \beta_1 &= (\cos(-\frac{\pi}{18}) + i\sin(-\frac{\pi}{18})), \\ \beta_2 &= (\cos(-\frac{\pi}{18} + \frac{2\pi}{3}) + i\sin(-\frac{\pi}{18} + \frac{2\pi}{3}) = (\cos(\frac{11\pi}{18}) + i\sin(\frac{11\pi}{18})), \\ \beta_3 &= (\cos(-\frac{\pi}{18} - \frac{2\pi}{3}) + i\sin(-\frac{\pi}{18} - \frac{2\pi}{3}) = (\cos(-\frac{13\pi}{18}) + i\sin(-\frac{13\pi}{18})). \end{aligned}$$

10. **Answer.**

(a) z is a solution of the equation concerned iff $z = 2(\cos(\frac{\pi}{2} + N \cdot \frac{2\pi}{5}) + i\sin(\frac{\pi}{2} + N \cdot \frac{2\pi}{5}))$ for some N amongst 0, 1, 2, 3, 4.

(b)
$$z = 2(\cos(\frac{\pi}{10}) + i\sin(\frac{\pi}{10}) \text{ or } z = 2(\cos(-\frac{3\pi}{10}) + i\sin(-\frac{3\pi}{10}) \text{ or } z = 2(\cos(-\frac{7\pi}{10}) + i\sin(-\frac{7\pi}{10}))$$
.

11. **Answer.**

- (a) There are exactly two elements in $C \cap D$. They are $\{0, 1\}, \{1, 2, 3\}$.
- (b) There are exactly five elements in $C \cup D$. They are $\{0, 1\}, \{1\}, \{1, 2, 3\}, \{3, 4\}, \{\{3\}, \{4\}\}.$
- (c) There are exactly two elements in $C \setminus D$. They are $\{1\}, \{3, 4\}$.
- (d) There is exactly one element in $D \setminus C$. It is $\{\{3\}, \{4\}\}$.
- (e) There are exactly three elements in $C \triangle D$. They are $\{1\}, \{3, 4\}, \{\{3\}, \{4\}\}$.
- (f) There are exactly four elements in $\mathfrak{P}(C \setminus D)$. They are \emptyset , {{1}}, {{3,4}}, {{1}, {3,4}}.

12. Answer.

- (a) Five.
- (b) Nine.
- (c) Six.
- (d) One.
- (e) Two.
- (f) One.
- (g) c, r.
- (h) $\emptyset, \{c\}, \{r\}, \{c, r\}.$

13. Answer.

- (a) $A = \emptyset$.
- (b) $B \neq \emptyset$; 125 is an element of B.

14. (b) **Solution.**

We proceed to determine all the solutions of the equation (†) by the sequence of manipulations below.

						Reminder.
Line 1.		$\sin(2x) + \sin(8x)$	=	$\sin(5x)$ ——	(†)	10//////////
Line 2.		$\sin(5x - 3x) + \sin(5x + 3x)$	=	$\sin(5x)$		
Line 3.		$2\sin(5x)\cos(3x)$	=	$\sin(5x)$		
Line 4.		$(2\cos(3x) - 1)\sin(5x)$	=	0		
Line 5.	(Case 1).	$\cos(3x) = \frac{1}{2}$	or	$\sin(5x) = 0$		
Line 6a.		$\cos(3x)$	=	$\frac{1}{2}$		
Line 6b.		3x	=	$\pm \frac{\pi}{3} + K \cdot 2\pi.$		(K may be an arbitrary integer.)
Line 6c.	(Case 2).	x	=	$\pm \frac{\pi}{9} + K \cdot \frac{2\pi}{3}$		
Line 7a.		$\sin(5x)$	=	0		
Line 7b.		5x	=	$M\pi$.		(M may be an arbitrary integer.)
Line 7c.		x	=	$M \cdot \frac{\pi}{5}$		

Checking:

- Let $x \in \mathbb{R}$. Suppose there exists some $K \in \mathbb{Z}$ such that $x = \frac{\pi}{9} + K \cdot \frac{2\pi}{3}$. Then $\sin(2x) + \sin(8x) \sin(5x) = \cdots = 0$. Therefore $\sin(2x) + \sin(8x) = \sin(5x)$.
- Let $x \in \mathbb{R}$. Suppose there exists some $L \in \mathbb{Z}$ such that $x = -\frac{\pi}{9} + L \cdot \frac{2\pi}{3}$. Then $\sin(2x) + \sin(8x) \sin(5x) = \cdots = 0$. Therefore $\sin(2x) + \sin(8x) = \sin(5x)$.
- Let $x \in \mathbb{R}$. Suppose there exists some $M \in \mathbb{Z}$ such that $x = M \cdot \frac{\pi}{5}$. Then $\sin(2x) + \sin(8x) \sin(5x) = \cdots = 0$. Therefore $\sin(2x) + \sin(8x) = \sin(5x)$.

Define

$$A = \left\{ x \in \mathbb{R} : x = \frac{\pi}{9} + K \cdot \frac{2\pi}{3} \text{ for some } K \in \mathbb{Z} \right\},\$$

$$B = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{9} + L \cdot \frac{2\pi}{3} \text{ for some } L \in \mathbb{Z} \right\},\$$

$$C = \left\{ x \in \mathbb{R} : x = M \cdot \frac{\pi}{5} \text{ for some } M \in \mathbb{Z} \right\}$$

The solution set of (†) is given by $A \cup B \cup C$.

(d) Solution.

Note that $6^2 + 8^2 = 100 = 10^2$. Take $\alpha = \arcsin(\frac{4}{5})$. Then $10\sin(\alpha) = 8$, $10\cos(\alpha) = 10\sqrt{1-\sin^2(\alpha)} = 6$. We proceed to determine all the solutions of the equation (†) by the sequence of manipulations below.

$$Reminder.$$

$$Line 1. \qquad 6\sin(x) + 8\cos(x) = 5 \qquad (\dagger)$$

$$Line 2. \qquad 10\sin(x)\cos(\alpha) + 10\cos(x)\sin(\alpha) = 5$$

$$Line 3. \qquad 10\sin(x + \alpha) = 5$$

$$Line 4. \qquad \sin(x + \alpha) = \frac{1}{2}$$

$$Line 5. \qquad x + \alpha = (-1)^N \cdot \frac{\pi}{6} + N\pi. \qquad (N \text{ may be an arbitrary integer.})$$

$$Line 6. \qquad x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi$$

Checking:

• Let $x \in \mathbb{R}$. Suppose there exists some $N \in \mathbb{Z}$ such that $x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi$. Then $6\sin(x) + 8\cos(x) = \dots = 5$. The solution set of (†) is given by $\left\{ x \in \mathbb{R} : x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi \text{ for some } N \in \mathbb{Z} \right\}$.

(f) Solution.

We proceed to determine all the solutions of the equation (†) by the sequence of manipulations below.

				Reminder.
Line 1.	$\cos(\frac{1}{2x})$	=	1 — (†)	
Line 2.	$\frac{1}{2x}$	=	$2N \cdot \pi$.	(N may be an arbitrary integer.)
Line 3.	x	=	$\frac{1}{4N\cdot\pi}.$	(N is required to be non-zero.)

Checking:

• Let $x \in \mathbb{R}$. Suppose there exists some $N \in \mathbb{Z} \setminus \{0\}$ such that $x = \frac{1}{4N \cdot \pi}$. Then $\cos(\frac{1}{2x}) = \cdots = 1$.

The solution set of (†) is given by $\left\{ x \in \mathbb{R} : x = \frac{1}{4N \cdot \pi} \text{ for some } N \in \mathbb{Z} \setminus \{0\} \right\}$.

Answer.

(a) Define

$$\begin{split} A &= \Big\{ x \in \mathbb{R} : x = -\frac{\pi}{2} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \Big\}, \\ B &= \Big\{ x \in \mathbb{R} : x = (-1)^M \cdot \frac{\pi}{6} + M\pi \text{ for some } M \in \mathbb{Z} \Big\} \end{split}$$

The solution set of the equation $\cos(2x) = \sin(x)$ is given by $A \cup B$.

(b) Define

$$A = \left\{ x \in \mathbb{R} : x = \frac{\pi}{9} + K \cdot \frac{2\pi}{3} \text{ for some } K \in \mathbb{Z} \right\},$$

$$B = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{9} + L \cdot \frac{2\pi}{3} \text{ for some } L \in \mathbb{Z} \right\},$$

$$C = \left\{ x \in \mathbb{R} : x = M \cdot \frac{\pi}{5} \text{ for some } M \in \mathbb{Z} \right\}$$

The solution set of the equation $\sin(2x) + \sin(8x) = \sin(5x)$ is given by $A \cup B \cup C$.

(c) Define

$$A = \left\{ x \in \mathbb{R} : x = \frac{\pi}{3} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \right\},$$

$$B = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{3} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \right\},$$

$$C = \left\{ x \in \mathbb{R} : x = \frac{\pi}{2} + M\pi \text{ for some } M \in \mathbb{Z} \right\}$$

The solution set of the equation $2\sin(\frac{x}{2})\sin(\frac{3x}{2}) = \cdots = 1$ is given by $A \cup B \cup C$.

- (d) Take $\alpha = \arcsin(\frac{4}{5})$. The solution set of the equation $6\sin(x) + 8\cos(x) = 5$ is given by $\left\{x \in \mathbb{R} : x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi \text{ for some } N \in \mathbb{Z}\right\}$.
- (e) The solution set of the equation $\tan(3\sqrt{x}) = 1$ is given by $\left\{ x \in \mathbb{R} : x = \left(\frac{1}{4} + N\right)^2 \cdot \frac{\pi^2}{9} \text{ for some } N \in \mathbb{N} \right\}$.

(f) The solution set of the equation
$$\cos(\frac{1}{2x}) = 1$$
 is given by $\left\{ x \in \mathbb{R} : x = \frac{1}{4N \cdot \pi} \text{ for some } N \in \mathbb{Z} \setminus \{0\} \right\}$.

15. **Answer.**

- (a) Let A, B be sets. We say that A is a subset of B if the statement (†) holds:
 - (†) For any object x, if $x \in A$ then $x \in B$.

(b) i. (I)
$$x \in A$$

(II) There exists some
(III) \mathbb{Z}
(IV) $x = 16m^{6}$
(V) n
(VI) $2, m \in \mathbb{Z}$
(VII) $2(8m^{6}) = 2(2m^{2})^{3} = 2n^{3}$
(VIII) $x \in B$
ii. (I) $x_{0} = 2 \cdot 1^{3}$

(II) 1 (III) $x_0 \in B$ (IV) Suppose it were true that $x_0 \in A$. (V) there would exist some $m \in \mathbb{Z}$ (VI) $2 \cdot (4m^6) = 8m^6 = 1$ (VII) $4m^6 \in \mathbb{Z}$ (VIII) divisible (c) i. (I) Suppose $\zeta \in A$ (II) $|\zeta| \leq 2$ $(III) \leq$ (IV) $(\mathsf{Im}(\zeta))^2$ (V) $|\mathsf{Re}(\zeta)| \le |\zeta|$ (VI) $|\mathsf{Re}(\zeta)| \leq 2$ $(\mathrm{VII})~(\mathsf{Im}(\zeta))^2 \leq (\mathsf{Re}(\zeta))^2 + (\mathsf{Im}(\zeta))^2 = |\zeta|^2$ (VIII) Since $|\mathsf{Im}(\zeta)|$ and $|\zeta|$ are non-negative, we have $|\mathsf{Im}(\zeta)| \leq |\zeta|$. Then by (\star) , we have $|\mathsf{Im}(\zeta)| \leq 2$. (IX) and (X) $x \in B$ ii. (I) Let $\zeta_0 = 2 + 2i$. (II) $\operatorname{Re}(\zeta_0)$ (III) $|\mathsf{Im}(\zeta_0)| \le 2$ (IV) $\zeta_0 \in B$ (V) $|\zeta_0|^2$ (VI) 8(VII) 4(VIII) 2(IX) $\zeta_0 \notin A$

 ${\rm (X)}\ B\ \not\subset\ A$