MATH1050 Assignment 2 (Answers and selected solutions)

- 1. ——
- 2. ——
- 3. ——

4. Solution.

(a) Let n be a positive integer, and f(x) be the polynomial $f(x) = (1+x)^n$.

Note that
$$f(x) = \sum_{k=0}^{n} \binom{n}{k} x^{k}$$
 as polynomials.
i. $\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} \cdot 1^{k} = f(1) = (1+1)^{n} = 2^{n}$.
ii. $\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = f(-1) = (1-1)^{n} = 0$.
iii. $\sum_{k=0}^{n} \frac{1}{2^{k}} \binom{n}{k} = f(\frac{1}{2}) = (1+\frac{1}{2})^{n} = \frac{3^{n}}{2^{n}}$.
iv. $\sum_{k=0}^{n} \frac{(-1)^{k} \cdot 3^{k-1}}{5^{k+1}} \binom{n}{k} = \frac{1}{15} \sum_{k=0}^{n} \frac{(-1)^{k} \cdot 3^{k}}{5^{k}} \binom{n}{k} = \frac{1}{15} f(-\frac{3}{5}) = \frac{1}{15} \left(1 - \frac{3}{5}\right)^{n} = \frac{2^{n}}{15 \cdot 5^{n}}$.

(b) Let m be a positive integer. Then 2m is a positive integer. Let g(x) be the polynomial $g(x) = (1+x)^{2m}$.

Note that
$$g(x) = \sum_{k=0}^{2m} {\binom{2m}{k}} x^k$$
 as polynomials.
i. $\sum_{k=0}^{2m} {\binom{2m}{k}} = g(1) = 2^{2m}$.
ii. $\sum_{k=0}^{2m} (-1)^k {\binom{2m}{k}} = g(-1) = 0$.
iii.

$$\sum_{k=0}^{m} \binom{2m}{2k} = \sum_{j=0}^{2m} \frac{1}{2} \binom{2m}{j} + (-1)^{j} \binom{2m}{j}$$

= $\frac{1}{2} (\sum_{j=0}^{2m} \binom{2m}{j} + \sum_{j=0}^{2m} (-1)^{j} \binom{2m}{j}) = \frac{1}{2} (2^{2m} + 0) = 2^{2m-1}$

iv.

$$\sum_{k=0}^{m-1} \binom{2m}{2k+1} = \sum_{j=0}^{2m} \frac{1}{2} \binom{2m}{j} - (-1)^j \binom{2m}{j}$$

$$= \frac{1}{2} (\sum_{j=0}^{2m} \binom{2m}{j} - \sum_{j=0}^{2m} (-1)^j \binom{2m}{j}) = \frac{1}{2} (2^{2m} - 0) = 2^{2m-1}$$

Answer.

(a) i. 2^n . ii. 0. iii. $\frac{3^n}{2^n}$.

iv.
$$\frac{2^n}{15 \cdot 5^n}$$
.
(b) i. 2^{2m} .
ii. 0.
iii. 2^{2m-1} .
iv. 2^{2m-1} .
(c) i. $(-1)^p \cdot 2^{2p-1}$.
ii. 0.
iii. $2^{4p-2} + (-1)^p \cdot 2^{2p-1}$.
iv. $2^{4p-2} - (-1)^p \cdot 2^{2p-1}$.
v. 2^{4p-2} .
vi. 2^{4p-2} .

5. Solution.

- (a) Let $n \in \mathbb{N} \setminus \{0\}$, and $k \in \mathbb{Z}$.
 - (Case 1.) Suppose $0 < k \le n$. Then

$$k \cdot \binom{n}{k} = k \cdot \frac{n!}{k! \cdot (n-k)!} = \frac{n!}{(k-1)! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot [(n-1)-(k-1)]!} = n \cdot \binom{n-1}{k-1}.$$

• (Case 2.) Suppose $k \le 0$ or k > n. Then $k \cdot \binom{n}{k} = 0 = n \cdot \binom{n-1}{k-1}$.

Hence in any case, $k \cdot \begin{pmatrix} n \\ k \end{pmatrix} = n \cdot \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$.

(b) i. Let n be a positive integer.

$$\sum_{k=0}^{n} k \begin{pmatrix} n \\ k \end{pmatrix} = \sum_{k=1}^{n} k \begin{pmatrix} n \\ k \end{pmatrix} = \sum_{k=1}^{n} n \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} = n \sum_{k=1}^{n} \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} = n \sum_{j=0}^{n-1} \begin{pmatrix} n-1 \\ j \end{pmatrix} = n \cdot 2^{n-1}.$$

(c) i. Let m be a positive integer.

$$\begin{split} \sum_{k=0}^{m} \frac{1}{k+1} \begin{pmatrix} m \\ k \end{pmatrix} &= \sum_{k=0}^{m} \frac{1}{m+1} \begin{pmatrix} m+1 \\ k+1 \end{pmatrix} \\ &= \frac{1}{m+1} \sum_{k=0}^{m} \begin{pmatrix} m+1 \\ k+1 \end{pmatrix} \\ &= \frac{1}{m+1} \sum_{j=1}^{m+1} \begin{pmatrix} m+1 \\ j \end{pmatrix} \\ &= \frac{1}{m+1} (\sum_{j=0}^{m+1} \begin{pmatrix} m+1 \\ j \end{pmatrix} - 1) = \frac{2^{m+1} - 1}{m+1} \end{split}$$

Answer.

(a) ----
(b) i.
$$n \cdot 2^{n-1}$$

ii. When $n = 1$, $\sum_{k=0}^{n} k(k-1) \binom{n}{k} = 1$. Whenever $n \ge 2$, $\sum_{k=0}^{n} k(k-1) \binom{n}{k} = 0$.
iii. $n(n-1) \cdot 2^{n-2}$
iv. $n(n+1) \cdot 2^{n-2}$
(c) i. $\frac{2^{m+1}-1}{m+1}$

ii.
$$\frac{1}{m+1}$$

iii. $\frac{2^{m+2}-m-3}{(m+2)(m+1)}$

6. Answer.

(a)

(b)

(I) there exist some $m, n \in \mathbb{Z}$ (II) $n \neq 0$ and m = nx(I) Suppose x, y are rational i. (II) there exist some (III) $n \neq 0$ and (IV) there exist some $p, q \in \mathbb{Z}$ such that (V) $n \neq 0$ (VI) $q \neq 0$ (VII) $mq + pn \in \mathbb{Z}$ and $nq \in \mathbb{Z}$ (VIII) x + y is rational ii. (I) there exist some $m, n \in \mathbb{Z}$ such that (II) there exists some $p, q \in \mathbb{Z}$ such that $q \neq 0$ and p = qy(III) mp = nxqy = nq(xy)(IV) and $q \neq 0$ (IV) $nq \neq 0$

(VI) since $m, n, p, q \in \mathbb{Z}$

7. Answer.

- (a) Suppose x, y are integers. Then we say that x is divisible by y if there exists some $n \in \mathbb{Z}$ such that x = ny.
- (b) i. (I) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n and y is divisible by n.

(II) there exists some $k \in \mathbb{Z}$ such that x = kn

- (III) there exists some $\ell \in \mathbb{Z}$ such that $y = \ell n$
- (IV) x = kn and $y = \ell n$
- (V) $k + \ell \in \mathbb{Z}$
- (VI) x + y is divisible by n
- ii. (I) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n or y is divisible by n.
 - (II) x is divisible by n
 - (III) there exists some $k \in \mathbb{Z}$ such that
 - (IV) xy = (kn)y = (ky)n
 - (V) since $k \in \mathbb{Z}$ and $y \in \mathbb{Z}$, we have $ky \in \mathbb{Z}$
 - (VI) xy is divisible by n
 - (VII) Suppose
 - (VIII) xy is divisible by n
 - (IX) in any case, xy is divisible by n

Remark. The entries for (IV), (V) may be interchanged.

8. Answer.

```
(a) (I) it were true that \sqrt{a^2 - b^2} + \sqrt{2ab - b^2} \le a

(II) and \sqrt{2ab - b^2} \ge 0

(III) \ge

(IV) a^2 - b^2

(V) since a > b > 0, we have 2ab - b^2 = (2a - b)b \ge 0

(VI) a^2
```

(VII) $(\sqrt{a^2 - b^2} + \sqrt{2ab - b^2})^2$ (VIII) $\sqrt{(a-b)(a+b)(2a-b)b}$ (IX) $b^2 - ab$ (X) b(b-a) < 0(I) $m, n \in \mathbb{Z}$ (b) (II) 0 < |m| < |n|(III) it were true that m was divisible by n(IV) there would exist some $k \in \mathbb{Z}$ such that m = kn(V) |m| > 0(VI) $k \neq 0$ (VII) Since k was an integer (VIII) $|k||n| \ge 1 \cdot |n|$ (IX) assumption (X) m is not divisible by n(c) (I) x is irrational (II) it were true that \sqrt{x} was rational (III) x is positive (IV) x(V) \sqrt{x} was rational (VI) rational (VII) irrational (VIII) rational and irrational

- (IX) Contradiction arises
- (X) \sqrt{x} is irrational
- 9. (a) Let $m, n, c \in \mathbb{Z}$. We say that c is a common divisor of m, n if m is divisible by c and n is divisible by c.
 - (b) Let $p \in \mathbb{Z}$. Suppose p is not amongst 0, 1, -1. Then we say that p is a prime number if the statement (\star) holds: For any $n \in \mathbb{Z}$, if p is divisible by n then n = 1 or n = -1 or n = p or n = -p.

 $\ Acceptable \ answer.$

Let $p \in \mathbb{Z}$. Suppose p is not amongst 0, 1, -1. Then we say that p is a prime number if p is divisible by no integer other than 1, -1, p, -p.

- (c) Let $h, k, p \in \mathbb{Z}$. Suppose p is a prime number. Further suppose hk is divisible by p. Then at least one of h, k is divisible by p.
- (d) (I) Suppose it were true that $\sqrt[3]{3}$ was not irrational
 - (II) there would exist some $m, n \in \mathbb{Z}$
 - (III) $n \neq 0$ and $m = n \cdot \sqrt[3]{3}$
 - (IV) m^3 would be divisible by 3
 - (V) Euclid's Lemma
 - (VI) there would exist some $k \in \mathbb{Z}$ such that m = 3k
 - (VII) Note that $3k^3$ was an integer. Then n^3 would be divisible by 3.
 - (VIII) 3 is a prime number
 - (IX) n would be divisible by 3
 - (X) m, n have no common divisors other than -1, 1