
MATH1050 Assignment 2

1. This is a review question on the summation notation.

Let n be a positive integer, and x1, x2, · · · , xn be real numbers. Define x̄ =
1

n

n∑
k=1

xk.

(a) i. Prove that
n∑

j=1

(xj − x̄) = 0. ii. Prove that
n∑

j=1

(xj − x̄)2 =

n∑
j=1

xj
2 − nx̄2.

(b) Let a, b be real numbers, with a ̸= 0. For each j = 1, 2, · · · , n, define yj = axj + b. Define ȳ =
1

n

n∑
k=1

yk.

i. Prove that ȳ = ax̄+ b.
ii. Prove that

n∑
j=1

(yj − ȳ)2 = a2

 n∑
j=1

xj
2 − nx̄2

.

2. This is a review question on binomial coefficients and the Binomial Theorem.
We introduce this definition below:

• Let n ∈ N. Define
(

n

k

)
=


n!

k! · (n− k)!
if k ∈ J0, nK,

0 if k ∈ Z and (k < 0 or k > n).

The number
(

n

k

)
is usually referred to as the binomial coefficients of n over k.

(a) Let n ∈ N, and k ∈ Z.

i. Verify that
(

n

k

)
=

(
n

n− k

)
. ii. Verify that

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

(b)♢ Apply the results above and the Telescopic Method (or mathematical induction) to verify the statements below:

i.
m∑
j=0

(
n+ j

j

)
=

(
n+m+ 1

m

)
for any n,m ∈ N. ii.

m∑
j=0

(
n+ j

n

)
=

(
n+m+ 1

n+ 1

)
for any n,m ∈ N.

3. This is a review question on binomial coefficients and the Binomial Theorem.
Apply mathematical induction to prove the Binomial Theorem (formulated in terms of polynomials):

• Suppose n ∈ N. Then (1+x)n = 1+

(
n

1

)
x+

(
n

2

)
x2+· · ·+

(
n

k

)
xk+· · ·+

(
n

n− 1

)
xn−1+xn as polynomials.

4. This is a review question on binomial coefficients and the Binomial Theorem.

(a) Let n be a positive integer. By considering the polynomial (1 + x)n, or otherwise, find the respective values of the
numbers below. Leave your answer in terms of n where appropriate.

i.
n∑

k=0

(
n

k

)
. ii.

n∑
k=0

(−1)k
(

n

k

)
. iii.

n∑
k=0

1

2k

(
n

k

)
. iv.

n∑
k=0

(−1)k ·3k−1

5k+1

(
n

k

)
.

(b)♢ Let m be a positive integer. By consider the polynomial (1 + x)2m, or otherwise, find the respective values of the
numbers below. Leave your answer in terms of m where appropriate.

i.
2m∑
k=0

(
2m

k

)
. ii.

2m∑
k=0

(−1)k
(

2m

k

)
. iii.

m∑
k=0

(
2m

2k

)
. iv.

m−1∑
k=0

(
2m

2k + 1

)
.

(c)♣ Let p be a positive integer. By consider the polynomial (1 + x)4p, or otherwise, find the respective values of the
numbers below. Leave your answer in terms of p where appropriate. (Hint. Make good use of complex numbers.)

i.
2p∑
j=0

(−1)j
(

4p

2j

)
ii.

2p−1∑
j=0

(−1)j
(

4p

2j + 1

)
iii.

p∑
k=0

(
4p

4k

)
.
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iv.
p−1∑
k=0

(
4p

4k + 2

)
. v.

p−1∑
k=0

(
4p

4k + 1

)
. vi.

p−1∑
k=0

(
4p

4k + 3

)
.

5. This is a review question on binomial coefficients and the Binomial Theorem.

(a) Let n ∈ N\{0}, and k ∈ Z. Prove that k ·
(

n

k

)
= n ·

(
n− 1

k − 1

)
.

(b) Let n be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of n where
appropriate.

i.
n∑

k=0

k

(
n

k

)
. ii.♢

n∑
k=0

(−1)k+1k

(
n

k

)
. iii.♣

n∑
k=0

k(k − 1)

(
n

k

)
. iv.

n∑
k=0

k2
(

n

k

)
.

Remark. There is an alternative method for computing the sums described here: make use of differentiation.

(c)♢ Let m be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of m
where appropriate.

i.
m∑

k=0

1

k + 1

(
m

k

)
. ii.♢

m∑
k=0

(−1)k

k + 1

(
m

k

)
. iii.♣

m∑
k=0

1

(k + 2)(k + 1)

(
m

k

)
.

Remark. There is an alternative method for computing the sums described here: make use of integration.

6. (a) Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers:
Suppose x ∈ R. Then we say that x is rational if (I) such that (II) .

(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (A) and a proof for the statement (B). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (A):
(A) Let x, y ∈ R. Suppose x, y are rational. Then x+ y is rational.

Let x, y ∈ R. (I) .

[We want to deduce that x+y is rational. This amounts to verifying the statement ‘there exist
some s, t ∈ Z such that t ̸= 0 and s = t(x+ y)’.]

By definition, (II) m,n ∈ Z such that (III) m = nx.
Also, (IV) q ̸= 0 and p = qy.
Note that mq + pn = nxq + qyn = nq(x+ y) .
Since (V) and (VI) , we have nq ̸= 0.
Also, since m,n, p, q ∈ Z, we have (VII) .
Hence, by definition, (VIII) .

ii. Here we prove the statement (B):
(B) Let x, y be real numbers. Suppose x, y are rational. Then xy is rational.

Let x, y be real numbers. Suppose x, y are rational.

[We want to deduce that xy is rational. This amounts to verifying the statement ‘there exist
some s, t ∈ Z such that t ̸= 0 and s = t(xy)’.]

By definition, (I) n ̸= 0 and m = nx.
Also, (II) .
Note that (III) .
Since n ̸= 0 (IV) , we have (V) .
Also, (VI) , we have mp ∈ Z and nq ∈ Z.
Hence, by definition, xy is rational.

7. (a) Explain the phrase divisibility for integers by stating the appropriate definition.
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(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (C) and a proof for the statement (D). (The ‘underline’ for each blank bears no
definite relation with the length of the answer for that blank.)

i. Here we prove the statement (C):
(C) Let x, y, n ∈ Z. Suppose x is divisible by n and y is divisible by n. Then x+ y is divisible by n.

(I)
Since x is divisible by n, (II) .
Since y is divisible by n, (III) .
We have (IV) . Then x+ y = kn+ ℓn = (k + ℓ)n.
Since k ∈ Z and ℓ ∈ Z, we have (V) .
Therefore, by definition, (VI) .

ii. Here we prove the statement (D):
(D) Let x, y, n ∈ Z. Suppose x is divisible by n or y is divisible by n. Then xy is divisible by n.

(I)

• (Case 1). Suppose (II) . Then (III) x = kn.

Note that (IV) . Also, (V) .

Then (VI) .

• (Case 2). (VII) y is divisible by n. Modifying the argument for (Case 1), we also
deduce that (VIII) .

Hence, (IX) .

8. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (E), a proof for the statement (F ), and a proof for the statement (G). (The ‘underline’
for each blank bears no definite relation with the length of the answer for that blank.)

(a) Here we prove the statement (E):

(E) Let a, b be real numbers. Suppose a > b > 0. Then
√
a2 − b2 +

√
2ab− b2 > a.

Let a, b be real numbers. Suppose a > b > 0.
Further suppose that (I) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Note that
√
a2 − b2 ≥ 0 (II) . Then a ≥

√
a2 − b2 +

√
2ab− b2 (III) 0.

Since a > b > 0, we have a2 − b2 = (a− b)(a+ b) ≥ 0. Then (
√
a2 − b2)2 = (IV) .

Similarly, (V) . Then (
√
2ab− b2)2 = 2ab− b2.

Therefore we would have

(VI) ≥ (VII)

= (a2 − b2) + (2ab− b2) + 2
√
(a2 − b2)(2ab− b2)

= a2 − 2b2 + 2ab+ 2
√
(a− b)(a+ b)(2a− b)b.

Hence
0 ≤ (VIII) ≤ (IX) = b(b− a).

Recall that by assumption, a > b > 0. Then (X) .
Therefore 0 ≤ b(b− a) < 0. Contradiction arises.
It follows that, in the first place,

√
a2 − b2 +

√
2ab− b2 > a.

(b) Here we prove the statement (F ):
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(F ) Let m,n ∈ Z. Suppose 0 < |m| < |n|. Then m is not divisible by n.

Let (I) . Suppose (II) .
Further suppose (III) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since m was divisible by n, by definition (IV) .
By assumption, (V) . Then m ̸= 0.
Since m ̸= 0 and m = kn, we would have (VI) . Then |k| ̸= 0.

(VII) , |k| would also be an integer. Then |k| ≥ 1.
By assumption |n| > 0. Then |m| = |kn| = (VIII) = |n|.
Also, by (IX) , |n| > |m|.
Then |m| ≥ |n| > |m|. Therefore |m| > |m|. Contradiction arises.
It follows that, in the first place, (X) .

(c) Here we prove the statement (G):
(G) Let x be a positive real number. Suppose x is irrational. Then

√
x is irrational.

Let x be a positive real number.
Suppose (I) .
Further suppose (II) .

[Reminder. Under what we have supposed and what we have further supposed, we try to
obtain a contradiction.]

Since (III) , we have (
√
x)2 = (IV) .

Since (V) , (
√
x)2 would be rational as well.

Therefore x would be (VI) .
By assumption, x is (VII) . Then x would be simultaneously (VIII) .

(IX) .
It follows that, in the first place, (X) .

9. (a) Explain the phrase common divisor for integers by stating the appropriate definition.
(b) Explain the phrase prime number by stating the appropriate definition.
(c) State, without proof, Euclid’s Lemma.
(d) Here we prove the statement (H), with the help of Euclid’s Lemma:

(H) 3
√
3 is irrational.

(I) .

Then 3
√
3 would be a rational number. Therefore (II) such that (III) .

Without loss of generality, we may assume that m,n have no common divisors other than 1,−1.
Since m = n · 3

√
3, we would have m3 = 3n3.

Note that n3 was an integer. Then (IV) .
Now also note that 3 is a prime number. Then, by (V) , m would be divisible by 3.
Therefore (VI) .
Then we would have 27k3 = (3k)3 = m3 = 3n3. Therefore n3 = 9k3 = 3(3k3).

(VII)
Note that (VIII) . Then, by Euclid’s Lemma, (IX) .
Therefore both m,n would be divisible by 3. Hence 3 would be a common divisor of m,n.
Recall that we have assumed that (X) . Contradiction arises.

Therefore the assumption that 3
√
3 was not irrational is false. It follows that 3

√
3 is irrational in the

first place.
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