MATH1050 Assignment 2

1. This is a review question on the summation notation.

Let *n* be a positive integer, and x_1, x_2, \dots, x_n be real numbers. Define $\bar{x} = \frac{1}{n} \sum_{k=1}^n x_k$.

(a) i. Prove that
$$\sum_{j=1}^{n} (x_j - \bar{x}) = 0.$$
 ii. Prove that $\sum_{j=1}^{n} (x_j - \bar{x})^2 = \sum_{j=1}^{n} x_j^2 - n\bar{x}^2.$

(b) Let a, b be real numbers, with $a \neq 0$. For each $j = 1, 2, \dots, n$, define $y_j = ax_j + b$. Define $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_k$.

i. Prove that $\bar{y} = a\bar{x} + b$.

ii. Prove that
$$\sum_{j=1}^{n} (y_j - \bar{y})^2 = a^2 \left(\sum_{j=1}^{n} x_j^2 - n\bar{x}^2 \right).$$

2. This is a review question on binomial coefficients and the Binomial Theorem. We introduce this definition below:

- Let $n \in \mathbb{N}$. Define $\binom{n}{k} = \begin{cases} \frac{n!}{k! \cdot (n-k)!} & \text{if } k \in [[0,n]], \\ 0 & \text{if } k \in \mathbb{Z} \text{ and } (k < 0 \text{ or } k > n). \end{cases}$
 - The number $\binom{n}{k}$ is usually referred to as the **binomial coefficients** of *n* over *k*.
- (a) Let $n \in \mathbb{N}$, and $k \in \mathbb{Z}$.

i. Verify that
$$\binom{n}{k} = \binom{n}{n-k}$$
.
ii. Verify that $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$.

 $(b)^{\diamond}$ Apply the results above and the Telescopic Method (or mathematical induction) to verify the statements below:

i.
$$\sum_{j=0}^{m} \binom{n+j}{j} = \binom{n+m+1}{m} \text{ for any } n, m \in \mathbb{N}.$$
 ii.
$$\sum_{j=0}^{m} \binom{n+j}{n} = \binom{n+m+1}{n+1} \text{ for any } n, m \in \mathbb{N}.$$

3. This is a review question on binomial coefficients and the Binomial Theorem.

Apply mathematical induction to prove the **Binomial Theorem** (formulated in terms of polynomials):

- Suppose $n \in \mathbb{N}$. Then $(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{k}x^k + \dots + \binom{n}{n-1}x^{n-1} + x^n$ as polynomials.
- 4. This is a review question on binomial coefficients and the Binomial Theorem.
 - (a) Let n be a positive integer. By considering the polynomial $(1 + x)^n$, or otherwise, find the respective values of the numbers below. Leave your answer in terms of n where appropriate.

i.
$$\sum_{k=0}^{n} \binom{n}{k}$$
. ii. $\sum_{k=0}^{n} (-1)^{k} \binom{n}{k}$. iii. $\sum_{k=0}^{n} \frac{1}{2^{k}} \binom{n}{k}$. iv. $\sum_{k=0}^{n} \frac{(-1)^{k} \cdot 3^{k-1}}{5^{k+1}} \binom{n}{k}$.

(b) Let *m* be a positive integer. By consider the polynomial $(1 + x)^{2m}$, or otherwise, find the respective values of the numbers below. Leave your answer in terms of *m* where appropriate.

i.
$$\sum_{k=0}^{2m} \binom{2m}{k}$$
. ii.
$$\sum_{k=0}^{2m} (-1)^k \binom{2m}{k}$$
. iii.
$$\sum_{k=0}^{m} \binom{2m}{2k}$$
. iv.
$$\sum_{k=0}^{m-1} \binom{2m}{2k+1}$$
.

(c) Let p be a positive integer. By consider the polynomial $(1 + x)^{4p}$, or otherwise, find the respective values of the numbers below. Leave your answer in terms of p where appropriate. (*Hint.* Make good use of complex numbers.)

i.
$$\sum_{j=0}^{2p} (-1)^j \begin{pmatrix} 4p \\ 2j \end{pmatrix}$$
 ii. $\sum_{j=0}^{2p-1} (-1)^j \begin{pmatrix} 4p \\ 2j+1 \end{pmatrix}$ iii. $\sum_{k=0}^p \begin{pmatrix} 4p \\ 4k \end{pmatrix}$

iv.
$$\sum_{k=0}^{p-1} \begin{pmatrix} 4p\\4k+2 \end{pmatrix}$$
. v.
$$\sum_{k=0}^{p-1} \begin{pmatrix} 4p\\4k+1 \end{pmatrix}$$
. vi.
$$\sum_{k=0}^{p-1} \begin{pmatrix} 4p\\4k+3 \end{pmatrix}$$
.

- 5. This is a review question on binomial coefficients and the Binomial Theorem.
 - (a) Let $n \in \mathbb{N} \setminus \{0\}$, and $k \in \mathbb{Z}$. Prove that $k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$.
 - (b) Let n be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of n where appropriate.

i.
$$\sum_{k=0}^{n} k \binom{n}{k}$$
.
$$\text{ii.} \stackrel{\diamond}{\sim} \sum_{k=0}^{n} (-1)^{k+1} k \binom{n}{k}$$
.
$$\text{iii.} \stackrel{\bullet}{\bullet} \sum_{k=0}^{n} k(k-1) \binom{n}{k}$$
.
$$\text{iv. } \sum_{k=0}^{n} k^2 \binom{n}{k}$$
.

Remark. There is an alternative method for computing the sums described here: make use of differentiation.

(c)^{\diamond} Let *m* be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of *m* where appropriate.

i.
$$\sum_{k=0}^{m} \frac{1}{k+1} \begin{pmatrix} m \\ k \end{pmatrix}$$
 ii.
$$\sum_{k=0}^{m} \frac{(-1)^k}{k+1} \begin{pmatrix} m \\ k \end{pmatrix}$$
 iii.
$$\sum_{k=0}^{m} \frac{1}{(k+2)(k+1)} \begin{pmatrix} m \\ k \end{pmatrix}$$
.

Remark. There is an alternative method for computing the sums described here: make use of integration.

6. (a) Fill in the blanks in the passage below so as to give the definition for the notion of rational numbers:

```
Suppose x \in \mathbb{R}. Then we say that x is rational if (I) such that (II)
```

- (b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (A) and a proof for the statement (B). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)
 - i. Here we prove the statement (A):
 - (A) Let $x, y \in \mathbb{R}$. Suppose x, y are rational. Then x + y is rational.

- ii. Here we prove the statement (B):
 - (B) Let x, y be real numbers. Suppose x, y are rational. Then xy is rational.

Let x, y be real numbers. Suppose x, y are rational. [We want to deduce that xy is rational. This amounts to verifying the statement 'there exist some $s, t \in \mathbb{Z}$ such that $t \neq 0$ and s = t(xy)'.] By definition, ______(I) _____ $n \neq 0$ and m = nx. Also, ______(II) _______. Note that ______(III) ______. Since $n \neq 0$ ______(IV) _____, we have _____(V) ____. Also, ______(VI) ______, we have $mp \in \mathbb{Z}$ and $nq \in \mathbb{Z}$. Hence, by definition, xy is rational.

7. (a) Explain the phrase *divisibility for integers* by stating the appropriate definition.

- (b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (C) and a proof for the statement (D). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)
 - i. Here we prove the statement (C):
 - (C) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n and y is divisible by n. Then x + y is divisible by n.

(I)		
Since x is divisible by n ,	(II)	
Since y is divisible by n ,	(III)	
We have (IV)	. Then $x + y =$	$kn + \ell n = (k + \ell)n.$
Since $k \in \mathbb{Z}$ and $\ell \in \mathbb{Z}$, we have	(V)	
Therefore, by definition,	(VI)	

ii. Here we prove the statement (D):

(D) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n or y is divisible by n. Then xy is divisible by n.

	(I)				
• (Case 1). Su	ippose	(II)	Then	(III)	x = kn.
Note that	(IV	7)	Also,	(V)	
Then	(VI)	·			
• (Case 2). deduce that	(VII)	y is divis $\overline{(VIII)}$	ible by n . Modify	ying the argum	nent for (Case 1), we also
Hence,	(IX)				

- 8. Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (E), a proof for the statement (F), and a proof for the statement (G). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)
 - (a) Here we prove the statement (E):
 - (E) Let a, b be real numbers. Suppose a > b > 0. Then $\sqrt{a^2 b^2} + \sqrt{2ab b^2} > a$.

Let a, b be real numbers. Suppose a > b > 0. Further suppose that _______. (I) ______.

[*Reminder.* Under what we have supposed and what we have further supposed, we try to obtain a contradiction.]

Note that $\sqrt{a^2 - b^2} \ge 0$ (II) . Then $a \ge \sqrt{a^2 - b^2} + \sqrt{2ab - b^2}$ (III) 0. Since a > b > 0, we have $a^2 - b^2 = (a - b)(a + b) \ge 0$. Then $(\sqrt{a^2 - b^2})^2 =$ (IV) . Similarly, (V) . Then $(\sqrt{2ab - b^2})^2 = 2ab - b^2$. Therefore we would have $(VI) \ge (VII) = (a^2 - b^2) + (2ab - b^2) + 2\sqrt{(a^2 - b^2)(2ab - b^2)} = a^2 - 2b^2 + 2ab + 2\sqrt{(a - b)(a + b)(2a - b)b}.$ Hence $0 \le (VIII) \le (IX) = b(b - a).$ Recall that by assumption, a > b > 0. Then (X). Therefore $0 \le b(b - a) < 0$. Contradiction arises.

It follows that, in the first place, $\sqrt{a^2 - b^2} + \sqrt{2ab - b^2} > a$.

(b) Here we prove the statement (F):

(F) Let $m, n \in \mathbb{Z}$. Suppose 0 < |m| < |n|. Then m is not divisible by n.

Let (I) . Suppose (II) .	
Further suppose (III) .	
[<i>Reminder.</i> Under what we have supposed and what we have further supp obtain a contradiction.]	osed, we try to
Since m was divisible by n , by definition (IV) .	
By assumption, (V) . Then $m \neq 0$.	
Since $m \neq 0$ and $m = kn$, we would have (VI). Then $ k \neq 0$. (VII), $ k $ would also be an integer. Then $ k \ge 1$.	
By assumption $ n > 0$. Then $ m = kn = $ (VIII) = $ n $.	
Also, by, $ n > m $.	
Then $ m \ge n > m $. Therefore $ m > m $. Contradiction arises.	
It follows that, in the first place, (X) .	

- (c) Here we prove the statement (G):
 - (G) Let x be a positive real number. Suppose x is irrational. Then \sqrt{x} is irrational.

Let x be a positive real	l number.
Suppose	(I) .
Further suppose	(II) .
[<i>Reminder</i> . Und obtain a contrad	ler what we have supposed and what we have further supposed, we try to iction.]
Since (III)	, we have $(\sqrt{x})^2 = (IV)$.
Since (V)	, $(\sqrt{x})^2$ would be rational as well.
Therefore x would be	(VI) .
By assumption, x is _	(VII) . Then x would be simultaneously (VIII) .
(IX)	
It follows that, in the	first place, (X) .

- 9. (a) Explain the phrase common divisor for integers by stating the appropriate definition.
 - (b) Explain the phrase *prime number* by stating the appropriate definition.
 - (c) State, without proof, Euclid's Lemma.
 - (d) Here we prove the statement (H), with the help of Euclid's Lemma:
 - (H) $\sqrt[3]{3}$ is irrational.

	(I)					
Then $\sqrt[3]{3}$ would be	a rational number	. Therefore	(II)	such that	(III) .	
Without loss of generality, we may assume that m, n have no common divisors other than $1, -1$.						
Since $m = n \cdot \sqrt[3]{3}$,	we would have m^3	$=3n^{3}.$				
Note that n^3 was a	an integer. Then	(IV)	/)			
Now also note that	3 is a prime numb	er. Then, by	(V)	, m would l	be divisible by 3.	
Therefore	(VI)	·				
Then we would have $27k^3 = (3k)^3 = m^3 = 3n^3$. Therefore $n^3 = 9k^3 = 3(3k^3)$.						
(VII)						
Note that	(VIII)	Then, by E	uclid's Len	nma,	(IX) .	
Therefore both m ,	n would be divisibl	e by 3. Hence 3	would be a	a common divisor	r of m, n.	
Recall that we have	e assumed that	(\mathbf{X})	. (Contradiction ari	ses.	
Therefore the assumption that $\sqrt[3]{3}$ was not irrational is false. It follows that $\sqrt[3]{3}$ is irrational in the first place.						