1. (a) Solution.

We proceed to solve the equation (\star) :

$$x + \sqrt{x+1} = 11 - (\star)$$

$$\sqrt{x+1} = 11 - x$$

$$(\sqrt{x+1})^2 = (11-x)^2$$

$$x+1 = x^2 - 22x + 121$$

$$x^2 - 23x + 120 = 0$$

$$(x-8)(x-15) = 0$$

$$x = 8 \text{ or } x = 15$$

Checking:

•
$$8 + \sqrt{8+1} = 11.$$

• $15 + \sqrt{15 + 1} = 19 \neq 11.$

The only solution of (\star) is x = 8.

(c) Solution.

We proceed to solve the equation (\star) :

$$\log_{5-x}(215 - x^3) = 3 - (\star)$$

$$\frac{\ln(215 - x^3)}{\ln(5 - x)} = 3$$

$$\ln(215 - x^3) = 3\ln(5 - x)$$

$$215 - x^3 = (5 - x)^3$$

$$x^2 - 5x - 6 = 0$$

$$(x + 1)(x - 6) = 0$$

$$x = -1 \quad \text{or} \quad x = 6$$

Checking:

- 5 (-1) = 6 > 0 and $215 (-1)^3 = 216 > 0$. We have $\log_{5-(-1)}(215 (-1)^3) = \log_6(216) = 3$.
- 5-6 < 0. Then $\log_{5-6}(u)$ is not well-defined for whatever real value of u.

The only solution of (\star) is x = -1.

(f) Solution.

We proceed to solve the equation (\star) :

$$(x-4)^2 - 5|x-4| + 6 = 0 \quad --- \quad (\star)$$
$$|x-4|^2 - 5|x-4| + 6 = 0$$
$$(|x-4| - 2)(|x-4| - 3) = 0$$
$$|x-4| = 2 \quad \text{or} \quad |x-4| = 3$$
$$x-4 = 2 \quad \text{or} \quad x-4 = -2 \quad \text{or} \quad x-4 = 3 \quad \text{or} \quad x-4 = -3$$
$$x = 6 \quad \text{or} \quad x = 2 \quad \text{or} \quad x = 7 \quad \text{or} \quad x = 1$$

(Every line is logically equivalent to the next. No checking of solution is needed.)

The solutions of (\star) are given by x = 1 or x = 2 or x = 6 or x = 7.

(m) Solution.

We proceed to solve the inequality (\star) :

$$\frac{2}{3-x} \leq 1 \quad --- \quad (\star)$$

$$2(3-x) \leq (3-x)^2 \quad \text{and } x \neq 3$$

$$(x-3)^2 + 2(x-3) \geq 0 \quad \text{and } x \neq 3$$

$$(x-1)(x-3) \geq 0 \quad \text{and } x \neq 3$$

$$(x \leq 1 \quad \text{or} \quad x \geq 3) \quad \text{and } x \neq 3$$

$$x \leq 1 \quad \text{or} \quad x > 3$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solutions of the inequality (\star) are given by $x \leq 1$ or x > 3.

(p) Solution.

We proceed to solve the inequality (\star) :

$$\begin{aligned} |x^2 - 5x| &< 6 \quad --- \quad (\star) \\ x^2 - 5x > -6 \quad \text{and} \quad x^2 - 5x < 6 \\ x^2 - 5x + 6 > 0 \quad \text{and} \quad x^2 - 5x - 6 < 0 \\ (x - 2)(x - 3) > 0 \quad \text{and} \quad (x + 1)(x - 6) < 0 \\ (x < 2 \text{ or } x > 3) \quad \text{and} \quad -1 < x < 6 \\ (x < 2 \text{ and} - 1 < x < 6) \quad \text{or} \quad (x > 3 \text{ and} - 1 < x < 6) \\ -1 < x < 2 \quad \text{or} \quad 3 < x < 6 \end{aligned}$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solutions of the inequality (\star) are given by -1 < x < 2 or 3 < x < 6.

(s) Solution.

We proceed to solve the inequality (\star) :

$$\begin{aligned} |x^2 - 3| &\leq 2|x| & --- & (\star) \\ (x^2 - 3)^2 &\leq 4x^2 \\ x^4 - 6x^2 + 9 &\leq 4x^2 \\ x^4 - 10x^2 + 9 &\leq 0 \\ (x^2 - 1)(x^2 - 9) &\leq 0 \\ (x + 3)(x + 1)(x - 1)(x - 3) &\leq 0 \\ -3 &\leq x &\leq -1 & \text{or} \quad 1 \leq x \leq 3 \end{aligned}$$

(Every line is logically equivalent to the next. No checking of solution is needed.)

The solutions of the inequality (\star) are given by $-3 \le x \le -1$ or $1 \le x \le 3$.

Answer.

- (a) The only solution of the equation $x + \sqrt{x+1} = 11$ is x = 8.
- (b) The only solution of the equation $2(4^x + 4^{-x}) 7(2^x + 2^{-x}) + 10 = 0$ is x = 0.
- (c) The only solution of the equation $\log_{5-x}(215 x^3) = 3$ is x = -1.
- (d) The solutions of the equation $|x^2 5x + 6| = x$ are given by $x = 3 \sqrt{3}$ or $x = 3 + \sqrt{3}$.
- (e) The only solution of the equation x|x| + 5x + 6 = 0 is x = -1.
- (f) The solutions of the equation $(x-4)^2 5|x-4| + 6 = 0$ are given by x = 1 or x = 2 or x = 6 or x = 7.

(g) The solutions of the system
$$\begin{cases} xy + x = 6\\ xy - y = 2 \end{cases}$$
 are given by $(x, y) = (2, 2)$ or $(x, y) = (3, 1)$.

- (h) The solutions of the system $\begin{cases} xy = 35\\ x^{\log_5(y)} = 7 \end{cases}$ are given by (x,y) = (5,7) or (x,y) = (7,5).
- (i) The solutions of the inequality $x^2 3x < 10$ are given by -2 < x < 5.
- (j) The solutions of the system $\begin{cases} (x+1)(x-6) \ge 8\\ 3x-1 \ge 5 \end{cases}$ are given by $x \ge 7$.
- (k) The solutions of the system $(x + 1)^2 > 16$ or 2x + 5 > 7 are given by x < -5 or x > 1.
- (1) The solutions of the inequality $(x-1)(x-2)(x-3) \ge 0$ are given by $1 \le x \le 2$ or $x \ge 3$.
- (m) The solutions of the inequality $\frac{2}{3-x} \le 1$ are given by $x \le 1$ or x > 3.
- (n) The solutions of the inequality $2x \frac{3}{x} \ge 1$. are given by $-1 \le x < 0$ or $x \ge 1.5$.
- (o) The solutions of the inequality $\frac{x^2 1}{x^2 4} \le -2$ are given by $-2 < x \le -\sqrt{3}$ or $\sqrt{3} \le x < 2$.
- (p) The solutions of the inequality $|x^2 5x| < 6$ are given by -1 < x < 2 or 3 < x < 6.
- (q) The solutions of the inequality $\left|\frac{3x+11}{x+2}\right| < 2$ are given by -7 < x < -3.
- (r) The solutions of the inequality |x| 4| > 3 are given by -1 < x < 1 or x < -7 or x > 7.
- (s) The solutions of the inequality $|x^2 3| \le 2|x|$ are given by $-3 \le x \le -1$ or $1 \le x \le 3$.
- (t) The solutions of the inequality |2x + 1| < 3x 2 are given by x > 3.

2. Answer.

- (a) (I) Suppose x + y > 1 and x > y
 - (II) (x-y)(x+y-1)
 - (III) Since
 - (IV) x > y
 - (V) x + y 1 > 0 and x y > 0
 - (VI) (x-y)(x+y) (x-y) > 0

(VII)
$$x^2 - y^2 > x - y$$

(b) (I) Let $x, y \in \mathbb{R}$. Suppose x > 0 and y > 0.

(II)
$$(x+y)(x^2 - xy + y^2) - xy(x+y) = (x+y)(x^2 - 2xy + y^2) = (x+y)(x-y)^2$$

- (III) x y is (also) a real number
- $(\mathrm{IV}) \geq 0$

(V)
$$(x^3 + y^3) - xy(x+y) \ge 0$$

- (c) (I) Suppose y > x > 0 and z > -y
 - (II) z > -y
 - (III) > 0
 - (IV) Suppose
 - (V) zy > zx

(VI)
$$\frac{(x+z)y - x(y+z)}{y(y+z)} > 0$$

- (VII) Suppose $\frac{x+z}{y+z} > \frac{x}{y}$ (VIII) $\frac{x+z}{y+z} \cdot y(y+z) > \frac{x}{y} \cdot y(y+z)$ (IX) zy - zx = (xy + zy) - (xy + zx) > 0
 - (X) and
 - (XI) z < 0 and y x < 0

(XII)
$$\frac{x+z}{y+z} > \frac{x}{y}$$
 iff $z > 0$

3. (a) (I) Suppose (II) $t^4 - s^4 = (t^2 - s^2)(t^2 + s^2) = (t - s)(t + s)(t^2 + s^2)$ (III) s < t(IV) $s \ge 0$ and (V) s + t > 0(VI) $t^2 > 0$ (VII) $s \ge 0$ (VIII) $t^2 + s^2 > 0$ (IX) f(t) - f(s) > 0(X) f is strictly increasing on $[0, +\infty)$ (b) (I) Suppose f is strictly decreasing on \mathbb{R} . (II) Pick any $s, t \in \mathbb{R}$. Suppose s < t. (III) $g(s) - g(t) = (f(s) - 2s^3) - (f(t) - 2t^3) = (f(s) - f(t)) + 2(t - s)(t^2 + st + s^2)$ (IV) Since f is strictly decreasing and s < t(V) $t^2 + st + s^2$ (VI) 0(VII) $f(s) - f(t) + 2(t-s)(t^2 + st + s^2) > 0$

(VIII) g(s) > g(t)

4. (a) Answer.

(I) There exists some non-zero complex number r

(II) for any
$$n \in \mathbb{N}$$
, $\frac{b_{n+1}}{b_n} = r$

(b) Answer.

L

(I) there exists some non-zero complex number r such that for any $n \in \mathbb{N}$, $\frac{b_{n+1}}{b_n} = r$

(II)
$$\frac{b_1}{b_0} = r$$

(III) $\frac{b_m}{b_{m-1}} = r$
(IV) $\frac{b_1}{b_0} \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdot \dots \cdot \frac{b_{m-1}}{b_{m-2}} \cdot \frac{b_m}{b_{m-1}} = r^m$
(V) $b_m = b_0 r^m$

(c) Solution.

Let $\{a_n\}_{n=0}^{\infty}$ be a geometric progression. Suppose $k, \ell, m \in \mathbb{N}$, and $a_k = A$, $a_\ell = B$ and $a_m = C$. By the result in the previous part, there exists some non-zero complex number r such that for any $n \in \mathbb{N}$, $a_n = a_0 r^n$. In particular, $a_k = a_0 r^k$, $a_\ell = a_0 r^\ell$ and $a_m = a_0 r^m$. Then

$$A^{\ell-m}B^{m-k}C^{k-\ell} = (a_0r^k)^{\ell-m}(a_0r^\ell)^{m-k}(a_0r^m)^{k-\ell}$$

= $a_0^{(\ell-m)+(m-k)+(k-\ell)}r^{k(\ell-m)+\ell(m-k)+m(k-\ell)}$
= $a_0^0r^0 = 1$

5. (a) **Answer.**

(I) Suppose a, b, c are in arithmetic progression.

(II) d (III) c - b = d(IV) $b^2 - a^2 - ca + bc = (b - a)(b + a) + (b - a)c = d(a + b + c)$

(V)
$$[(c^2 - ab) - (b^2 - ca)] = c^2 - b^2 - ab + ca = (c - b)(c + b) + (c - b)a = d(a + b + c)$$

(VI) $(b^2 - ca) - (a^2 - bc) = (c^2 - ab) - (b^2 - ca)$

(b) Solution.

Let a, b, c be numbers. Suppose $a^2 - bc, b^2 - ca, c^2 - ab$ are in arithmetic progression. Further suppose $a + b + c \neq 0$. By assumption, $b^2 - ca = \frac{(a^2 - bc) + (c^2 - ab)}{2}$. Therefore $2b^2 - 2ca = a^2 + c^2 - ab - bc$. Hence $0 = (a^2 - b^2) + (c^2 - b^2) + (ac - ab) + (ac - bc) = \dots = (a + c - 2b)(a + b + c)$. Since $a + b + c \neq 0$, we have a + c - 2b = 0. Then $b = \frac{a + b}{2}$. Therefore a, b, c are in arithmetic progression.

6. Answer.

P = Q = 1.

Hint. The key is to make use of the relations

$$\begin{cases} \alpha + \beta &= -b/a \\ \alpha \beta &= c/a \end{cases}$$

with which the assumption $\alpha = r\beta$ is combined.