
MATH1050 Assignment 1

1. This is a review question on solving equations/inequalities which can be handled with purely algebraic manipulations.

Solve each of the equations/inequalities/systems below for all its real solutions. ‘Check solution’ when indeed you have
to do so. 1

(a) x+
√
x+ 1 = 11.

(b) 2(4x + 4−x)− 7(2x + 2−x) + 10 = 0.

(c) log5−x(215− x3) = 3.

(d) |x2 − 5x+ 6| = x.
(e) x|x|+ 5x+ 6 = 0.

(f) (x− 4)2 − 5|x− 4|+ 6 = 0.

(g)
{

xy + x = 6

xy − y = 2

(h)
{

xy = 35

xlog5(y) = 7

(i) x2 − 3x < 10.

(j)
{

(x+ 1)(x− 6) ≥ 8

3x− 1 ≥ 5

(k) (x+ 1)2 > 16 or 2x+ 5 > 7.

(l) (x− 1)(x− 2)(x− 3) ≥ 0.

(m) 2

3− x
≤ 1.

(n) 2x− 3

x
≥ 1.

(o) x2 − 1

x2 − 4
≤ −2.

(p) |x2 − 5x| < 6.

(q)
∣∣∣∣3x+ 11

x+ 2

∣∣∣∣ < 2.

(r)♢
∣∣ |x| − 4

∣∣ > 3.

(s) |x2 − 3| ≤ 2|x|.

(t)♢ |2x+ 1| < 3x− 2.

Remark. Now suppose you are not required to give any step of algebraic manipulation. Can you modify the ‘graphical
method’ for solving equations in school mathematics to determine the answer for each part as quickly as possible?

2. Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they
give respectively a proof for the statement (A), a proof for the statement (B) and a proof for the statement (C). (The
‘underline’ for each blank bears no definite relation with the length of the answer for that blank.)

(a) Here we prove the statement (A):

(A) Let x, y ∈ R. Suppose x+ y > 1 and x > y. Then x2 − y2 > x− y.

Let x, y ∈ R. (I) .
We note that (x− y)(x+ y)− (x− y) = (II) . —— (⋆)

(III) x+ y > 1, we have x+ y − 1 > 0.
Since (IV) , we have x− y > 0.
Since (V) , we have (x− y)(x+ y − 1) > 0.
Then, by (⋆), (VI) .
Therefore (VII) .

(b) Here we prove the statement (B):

(B) Let x, y ∈ R. Suppose x > 0 and y > 0. Then x3 + y3 ≥ xy(x+ y).
1In various situations, you may need apply some special rules about the words ‘and’, ‘or’, known as the Distributive Laws for ‘and’, ‘or’, (with

or without your being aware of them). They may be in-formally stated as below:
A. The pair of statements below are the same in the sense that one holds exactly when the other holds:

∗ (blah-blah-blah or bleh-bleh-bleh) and bloh-bloh-bloh.
∗ (blah-blah-blah and bloh-bloh-bloh) or (bleh-bleh-bleh and bloh-bloh-bloh).

B. The pair of statements below are the same in the sense that one holds exactly when the other holds:

∗ (blah-blah-blah and bleh-bleh-bleh) or bloh-bloh-bloh.
∗ (blah-blah-blah or bloh-bloh-bloh) and (bleh-bleh-bleh or bloh-bloh-bloh).

More will be said of them in the discussion on logic.
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(I) .
We have (x3 + y3)− xy(x+ y) = (II) . —— (⋆)

Since x > 0 and y > 0, we have x+ y > 0.
Since x, y are real numbers, (III) . Then (x− y)2 ≥ 0.
Since x+ y > 0 and (x− y)2 ≥ 0, we have (x+ y)(x− y)2 (IV) .
Then, by (⋆), (V) .
Hence x3 + y3 ≥ xy(x+ y).

(c) Here we prove the statement (C):

(C) Let x, y, z ∈ R. Suppose y > x > 0 and z > −y. Then x+ z

y + z
>

x

y
iff z > 0.

Let x, y, z ∈ R. (I) .
Since (II) , we have y + z > 0. Then, since y > 0 also, we have y(y + z) (III) .

• [We want to deduce: ‘If z > 0 then x+ z

y + z
>

x

y
.’]

(IV) z > 0.

Then, since z > 0 and y > x, we have (V) .

Therefore (x+ z)y = xy + zy > xy + zx = x(y + z).

Then x+ z

y + z
− x

y
= (VI) .

Therefore x+ z

y + z
>

x

y
.

• [We want to deduce: ‘If x+ z

y + z
>

x

y
then z > 0.’]

(VII) .

Then xy + zy = (x+ z)y = (VIII) = x(y + z) = xy + zx.

Therefore z(y − x) = (IX) .
Then (z > 0 (X) y − x > 0) or ( (XI) ).
Since y > x, we have y − x > 0.

Hence z > 0 and y − x > 0. In particular, z > 0.

It follows that (XII) .

3.♢ We introduce/recall the definitions on strict monotonicity for real-valued functions of one real variable:

Let I be an interval, and h : D −→ R be a real-valued function of one real variable with domain D which contains
I as a subset entirely.
• h is said to be strictly increasing on I if the statement (StrIncr) holds:

(StrIncr) For any s, t ∈ I, if s < t then h(s) < h(t).
• h is said to be strictly decreasing on I if the statement (StrDecr) holds:

(StrDecr) For any s, t ∈ I, if s < t then h(s) > h(t).

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that they
give respectively a proof for the statement (D) and a proof for the statement (E). (The ‘underline’ for each blank bears
no definite relation with the length of the answer for that blank.)

(a) Define the function f : R −→ R by f(x) = x4 for any x ∈ R.
Here we prove the statement (D):

(D) f is strictly increasing on the interval [0,+∞).
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[We are going to verify the statement (†): ‘For any s, t ∈ [0,+∞), if s < t then f(s) < f(t).’ ]

Pick any s, t ∈ [0,+∞). (I) s < t.

[We want to deduce f(t)− f(s) > 0.]

We have f(t)− f(s) = (II) . —– (⋆)

[We want to check that each of t− s, t+ s, t2 + s2 is positive.
First we ask whether it is true that t− s > 0.]

Since (III) , we have t− s > 0.

[Next we ask whether it is true that t+ s > 0.]

Since (IV) s < t, we have t > 0.
Then, since s ≥ 0 and t > 0, we have (V) .

[Finally we ask whether it is true that t2 + s2 > 0.]

Since t > 0, we have (VI) . Since (VII) , we have s2 ≥ 0. Then (VIII) .
Now, since t− s > 0 and t+ s > 0 and t2 + s2 > 0, we have (t− s)(t+ s)(t2 + s2) > 0.
Then by (⋆), we have (IX) .
Therefore f(s) < f(t).
It follows from definition that (X) .

(b) Here we prove the statement (E):

(E) Let f : R −→ R be a function. Define the function g : R −→ R by g(x) = f(x)− 2x3 for any x ∈ R. Suppose f

is strictly decreasing on R. Then g is strictly decreasing on R.

Let f : R −→ R be a function. Define the function g : R −→ R by g(x) = f(x)− 2x3 for any x ∈ R.
(I)

[We are going to verify (possibly with the help of the assumption ‘f is strictly decreasing on
R’) the statement (†): ‘For any s, t ∈ R, if s < t then g(s) > g(t).’]

(II)

[We want to deduce g(s)− g(t) > 0.]

We have (III) . —– (⋆)

(IV) , we have f(s)− f(t) > 0.

Since s < t, we have t − s > 0. Also, (V) =
1

2
[t2 + (t+ s)2 + s2] ≥ (VI) . Then

2(t− s)(t2 + st+ s2) ≥ 0.
Since f(s)− f(t) > 0 and 2(t− s)(t2 + st+ s2) ≥ 0, we have (VII) .
Then by (⋆), we have g(s)− g(t) > 0.
Therefore (VIII) .
It follows from definition that g is strictly decreasing on R.

4. This is a review question on geometric progressions. If you are not confident with your understanding on the notion of
geometric progressions, you are advised to read the handout Arithmetic progressions and geometric progressions.

(a) Fill in the blanks in the passage below so as to give the definition for the notion of geometric progression:

Let {bn}∞n=0 be an infinite sequence of non-zero complex numbers.
The infinite sequence {bn}∞n=0 is said to be a geometric progression if the statement (GP) holds:

(GP) (I) such that (II) .
The number r is called the common ratio of this geometric progression.

(b) Consider the statement (F ):
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(F ) Let {bn}∞n=0 be an infinite sequence of non-zero complex numbers. Suppose {bn}∞n=0 is a geometric progression.
Then there exists some non-zero complex number r such that for any m ∈ N, bm = b0r

m.
Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that
they give respectively a proof for the statement (F ). (The ‘underline’ for each blank bears no definite relation with
the length of the answer for that blank.)

Let {bn}∞n=0 is an infinite sequence of non-zero complex numbers. Suppose {bn}∞n=0 is a geometric
progression.
Then (I) .
Pick any m ∈ N.

We have (II) , b2
b1

= r, b3
b2

= r, ..., bm−1

bm−2
= r, and (III) .

Then bm
b0

= (IV) .

Therefore (V) .

(c) Hence, or otherwise, prove the statement (♯):

(♯) Let {an}∞n=0 be a geometric progression. Suppose k, ℓ,m ∈ N, and ak = A, aℓ = B and am = C. Then
Aℓ−mBm−kCk−ℓ = 1.

5. This is a review question on arithmetic progressions. If you are not confident with your understanding on the notion of
arithmetic progressions, you are advised to read the handout Arithmetic progressions and geometric progressions.

(a) Consider the statement (G):

(G) Let a, b, c be numbers. Suppose a, b, c are in arithmetic progression. Then a2−bc, b2−ca, c2−ab are in arithmetic
progression.

Fill in the blanks in the blocks below, all labelled by capital-letter Roman numerals, with appropriate words so that
they give respectively a proof for the statement (G). (The ‘underline’ for each blank bears no definite relation with
the length of the answer for that blank.)

Let a, b, c be numbers. (I)
Denote the common difference by (II) .

[We want to verify that a2 − bc, b2 − ca, c2 − ab.
By definition, it sufficies to verify that (b2 − ca)− (a2 − bc) = (c2 − ab)− (b2 − ca).]

By definition, we have b− a = d and (III) .
Note that (b2 − ca)− (a2 − bc) = (IV) .
Also note that (V) .
Then (VI) .
Hence a2 − bc, b2 − ca, c2 − ab are in arithmetic progression.

(b) Prove the statement (♯):

(♯) Let a, b, c be numbers. Suppose a2−bc, b2−ca, c2−ab are in arithmetic progression. Further suppose a+b+c ̸= 0.
Then a, b, c are in arithmetic progression.

Remark. You may take for granted the result (♯):

(♯) Suppose u, v, w are numbers. Then u, v, w are in arithmetic progression iff v =
u+ w

2
.

6. This is a review question on quadratic polynomials.
Let a, b, c, r be numbers, with a ̸= 0 and c ̸= 0 and r ̸= 0. Let f(x) be the quadratic polynomial given by f(x) =

ax2 + bx+ c. Suppose α, β are the roots of f(x). Further suppose α = rβ.

Prove that rb2 = (Pr +Q)2ac. Here P,Q are some integers whose values you have to determined explicitly.
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