Lecture 7

February 1, 2021

1 Diffusion equation on the whole line

Solve the diffusion equation on the whole line
up (2, 1) — Ugg(2,8) =0, —c0<z <00, 0<t<o0.

Key observation: If w(z,t) is a solution to the diffusion equation, then
u(Axz, A\%t) is also a solution to the equation. Assume that ¢ > 0 and let \ = ﬁ
and z = =, it suggests us to find a solution in the form of u(x,t) = ﬁv(z) (
One Way to illustrate this: suppose lim, 400tz (z,t) = 0. It is not hard to see

that f u(z, t)dz is invariant on ¢. So we need to have

“+00 —+oo
/ u(z, t)dx = / u(z,1)dx.

If u(z,t) = ~v(2), we have

/_:O u(z,t)de = /_:O tiav(%)dx = /_:o v(z)de = /_:O u(w, 1)da.

Thus a would be 1 in order to have [*>° o t—av(%)daj = fj;o v(z)dx.)
We have
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Thus reduced to the ODE
1 1
v + §ZUI +o”" = 0.

So a solution to the ODE is in the form



This motives the definition of the fundamental solution to the diffusion equa-

tion
2

1 _z2
®(z,t) = {me T t>0
0. t<0

Here ¢ is chosen such that fj;: ®(x,t)dr = 1 for any fixed ¢. Note that

®(z,t) is singular at ¢ = 0.
The initial data problem

{ut(:r,t)—um(x,t) =0 —oo<z<00,0<t<o00,

u(z,0) = ¢(z).

can be derived from the convolution of the fundamental solution and initial
data as following: for t > 0

wwt) = [ el y.000)iy

> 1 (z—y)?
- e dy. 1
[m = o(y)dy (1)

There are several properties of u:

1. for t > 0, ®(xz — y, t) is infinitely differentiable with respect to  and ¢, so
is u(zx, t).

2. Suppose for any € > 0, there is a § > 0 such that for any |z —y| < ¢

[¢(z) —o(y)] < e

When t — 0, we have
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< 6+C/2f/? %effdz
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3. It is the solution to the diffusion equation. Because for ¢ > 0

Oy(r —y,t) — Pyp(x —y,t) = 0.

4. If u(z; t)] < Ae® for any t > 0 and z € R, then we have the uniqueness
of the diusion equation on the whole line. If u(x,t) does not satisfy this
growth condition, then there admit other non-physical solutions. We do
not prove this point in this course, see F.John, partial dierential equations
[Chapter 7] for reference.

In conclusion, we have

Theorem 1. Let ¢ € C(R) be bounded and let u(x,t) be given by the formula
(1). Then

o u e C®R x(0,00)).
e y satisfies u; = uy, for —oco < x < 00, 0 <t < o0.
(] hm(w,t)—>(m070) u(:z:,t) = ¢(I0) for zp € R and ¢ > 0.

lu(z, t)| < Ae?®” for any t > 0

and x € R,then we have the uniqueness.

2 Uniqueness by energy method in bounded in-
terval

Now we consider the diusion equation in a bounded interval

Ut — Ugy = f(2,1) 0<z<I,T>t>0
u(z,0) =0, 0<z<l
u(0,t) = g(t),u(l,t) =h(t) T >t>0.
Proof. Suppose u; and us are solutions to the initial value problem. w = u; —us
which satisfies
Wi — Wy =0 0<z<I,T>t>0
w(z,0) =0, 0<z<l
w(0,t) =w(l,t) =0, T >t>0.



Set e(t) = fol w?(z,t)dx, then

l
de(t = 2 / wrwdx
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So
e(t) <e(0)=0.

Thus
w(z,t) = 0.

O

We can use this energy method to prove stability in the integral sense for

l l
/ [u (2,t) — ug(z, 1)) *de < / [¢1(z) — po(2))*da.
0 0

3 Maximum Principle

If u(zx,t) smooth satisfies the diffusion equation

U —Upe =0 Up={0<z<I[,T>t>0}
u(z,0) = ¢, 0<z <l
u(0,t) =g(t), T >t>0
u(l,t) =h(t). T>t>0.

Then the maximum or minimum value of u(x,t) is assumed either initially
t = 0 or on the lateral sides x =0 or z = [.

Proof. Consider u¢(z,t) = u(x,t) — et for € > 0. It satisfies
uf —us, = —€<0. (2)

Because on the closed domain Ur = {(z,t)[0 < x < [,T >t > 0}, there
must be a maximum point of u¢(z,t) say (zo,o) in the space time Ur. Denote
I'r =0Ur — {t =T,0 < x < 1}. If we prove that (zg,t9) € I'r, that is fine.

So we may suppose (zg,tg) € {(z,t)|0 < x < ,T >t > 0}.Then at max-
imum point u§(xg,tp) = 0 (max point is a critical point) and —uf, > 0 (By
Taylor expansion u(x) = u(zg) +u'(20)(x —x0) +u" (x0) (x — 20)? +0((x — 0)?),



because z( is max point and u'(zg) = 0 thus u’(z9) < 0.) which contradicts
the equation (2) for any € > 0.

If (zo,t0) € {t = T,0 < = < I}, we also have —u$ (zo,%0) > 0 and
ug(zo,to) > 0 which is also a contradiction. So we have maxg, u® = maxp,, uc.
Let € — 0, we have

max u = max u.
Ur I'r
Similarly, we have
min v = min u.
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We can use maximum principle argument to prove the stability of the diffu-
sion equation in the uniform norm sense. Suppose f = g = h = 0, we have
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