
Lecture 7

February 1, 2021

1 Di�usion equation on the whole line

Solve the di�usion equation on the whole line

ut(x, t)− uxx(x, t) = 0, −∞ < x <∞, 0 < t <∞.

Key observation: If u(x, t) is a solution to the di�usion equation, then
u(λx, λ2t) is also a solution to the equation. Assume that t > 0 and let λ = 1√

t

and z = x√
t
, it suggests us to �nd a solution in the form of u(x, t) = 1√

t
v(z). (

One way to illustrate this: suppose limx→±∞ ux(x, t) = 0. It is not hard to see

that
∫ +∞
−∞ u(x, t)dx is invariant on t. So we need to have∫ +∞

−∞
u(x, t)dx =

∫ +∞

−∞
u(x, 1)dx.

If u(x, t) = 1
tα v(z), we have∫ +∞

−∞
u(x, t)dx =

∫ +∞

−∞

1

tα
v(

x√
t
)dx =

∫ +∞

−∞
v(x)dx =

∫ +∞

−∞
u(x, 1)dx.

Thus α would be 1
2 in order to have

∫ +∞
−∞

1
tα v( x√

t
)dx =

∫ +∞
−∞ v(x)dx.)

We have

ux =
1√
t

∂z

∂x
v′ =

1

t
v′,

uxx =
1

t
3
2

v′′,

ut = − 1

2t
3
2

v +
1√
t

∂z

∂t
v′ = − 1

2t
3
2

v − 1

2

x

t2
v′.

Thus reduced to the ODE

1

2
v +

1

2
zv′ + v′′ = 0.

So a solution to the ODE is in the form

v(z) = ce−
z2

4 .
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This motives the de�nition of the fundamental solution to the di�usion equa-
tion

Φ(x, t) =

{
1√
4πt

e−
x2

4t t > 0

0. t < 0

Here c is chosen such that
∫ +∞
−∞ Φ(x, t)dx = 1 for any �xed t. Note that

Φ(x, t) is singular at t = 0.
The initial data problem{

ut(x, t)− uxx(x, t) = 0 −∞ < x <∞, 0 < t <∞,
u(x, 0) = φ(x).

can be derived from the convolution of the fundamental solution and initial
data as following: for t > 0

u(x, t) =

∫ ∞
−∞

Φ(x− y, t)φ(y)dy

=

∫ ∞
−∞

1√
4πt

e−
(x−y)2

4t φ(y)dy. (1)

There are several properties of u:

1. for t > 0, Φ(x− y, t) is in�nitely di�erentiable with respect to x and t, so
is u(x, t).

2. Suppose for any ε > 0, there is a δ > 0 such that for any |x− y| ≤ δ

|φ(x)− φ(y)| ≤ ε.

When t→ 0, we have

|u(x, t)− φ(x)| = |
∫ +∞

−∞
Φ(x− y, t)(φ(y)− φ(x))dy|

≤ |
∫ x+δ

x−δ
Φ(x− y, t)(φ(y)− φ(x))dy|

+|
∫
R−[x−δ,x+δ]

Φ(x− y, t)(φ(y)− φ(x))dy|

≤ ε|
∫ +∞

−∞
Φ(y, t)dy|+ ‖φ‖|

∫
R−[x−δ,x+δ]

Φ(x− y, t)|

≤ ε+ C

∫ +∞

x+δ

1√
4πt

e−
(x−y)2

4t dy

≤ ε+ C

∫ +∞

δ
2
√
t

1√
π
e−z

2

dz

t→ 0 ≤ 2ε
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3. It is the solution to the di�usion equation. Because for t > 0

Φt(x− y, t)− Φxx(x− y, t) = 0.

4. If |u(x; t)| ≤ Aeax2

for any t ≥ 0 and x ∈ R, then we have the uniqueness
of the diusion equation on the whole line. If u(x, t) does not satisfy this
growth condition, then there admit other non-physical solutions. We do
not prove this point in this course, see F.John, partial dierential equations
[Chapter 7] for reference.

In conclusion, we have

Theorem 1. Let φ ∈ C(R) be bounded and let u(x, t) be given by the formula
(1). Then

• u ∈ C∞(R× (0,∞)).

• u satis�es ut = uxx for −∞ < x <∞, 0 < t <∞.

• lim(x,t)→(x0,0) u(x, t) = φ(x0) for x0 ∈ R and t > 0.

• |u(x, t)| ≤ Aeax2

for any t ≥ 0

• and x ∈ R,then we have the uniqueness.

2 Uniqueness by energy method in bounded in-

terval

Now we consider the diusion equation in a bounded interval


ut − uxx = f(x, t) 0 ≤ x ≤ l, T ≥ t > 0

u(x, 0) = 0, 0 ≤ x ≤ l
u(0, t) = g(t), u(l, t) = h(t) T ≥ t > 0.

Proof. Suppose u1 and u2 are solutions to the initial value problem. w = u1−u2

which satis�es
wt − wxx = 0 0 ≤ x ≤ l, T ≥ t > 0

w(x, 0) = 0, 0 ≤ x ≤ l
w(0, t) = w(l, t) = 0, T ≥ t > 0.
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Set e(t) =
∫ l

0
w2(x, t)dx, then

de(t)

dt
= 2

∫ l

0

wtwdx

= 2

∫ l

0

wwxxdx

= 2wwx(x, t)|x=l
x=0 − 2

∫ l

0

w2
xdx

≤ 0.

So
e(t) ≤ e(0) = 0.

Thus
w(x, t) ≡ 0.

We can use this energy method to prove stability in the integral sense for
f = g = h = 0.∫ l

0

[u1(x, t)− u2(x, t)]2dx ≤
∫ l

0

[φ1(x)− φ2(x)]2dx.

3 Maximum Principle

If u(x, t) smooth satis�es the di�usion equation
ut − uxx = 0 UT = {0 ≤ x ≤ l, T ≥ t > 0}
u(x, 0) = φ, 0 ≤ x ≤ l
u(0, t) = g(t), T ≥ t > 0

u(l, t) = h(t). T ≥ t ≥ 0.

Then the maximum or minimum value of u(x, t) is assumed either initially
t = 0 or on the lateral sides x = 0 or x = l.

Proof. Consider uε(x, t) = u(x, t)− εt for ε > 0. It satis�es

uεt − uεxx = −ε < 0. (2)

Because on the closed domain ŪT = {(x, t)|0 ≤ x ≤ l, T ≥ t ≥ 0}, there
must be a maximum point of uε(x, t) say (x0, t0) in the space time ŪT . Denote
ΓT = ∂UT − {t = T, 0 < x < l}. If we prove that (x0, t0) ∈ ΓT , that is �ne.

So we may suppose (x0, t0) ∈ {(x, t)|0 < x < l, T > t > 0}.Then at max-
imum point uεt(x0, t0) = 0 (max point is a critical point) and −uεxx ≥ 0 (By
Taylor expansion u(x) = u(x0)+u′(x0)(x−x0)+u′′(x0)(x−x0)2 +o((x−x0)2),
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because x0 is max point and u′(x0) = 0 thus u′′(x0) ≤ 0.) which contradicts
the equation (2) for any ε > 0.

If (x0, t0) ∈ {t = T, 0 < x < l}, we also have −uεxx(x0, t0) ≥ 0 and
uεt(x0, t0) ≥ 0 which is also a contradiction. So we have maxŪT u

ε = maxΓT u
ε.

Let ε→ 0, we have
max
ŪT

u = max
ΓT

u.

Similarly, we have
min
ŪT

u = min
ΓT

u.

We can use maximum principle argument to prove the stability of the di�u-
sion equation in the uniform norm sense. Suppose f = g = h = 0, we have

max
0≤x≤l

|u1(x, t)− u2(x, t)| ≤ max
0≤x≤l

|φ1(x)− φ2(x)|.
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