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1 The �nite interval

The wave equation with �xed ends:
vtt = c2vxx 0 < x < l,

v(x, 0) = φ(x), vt(x, 0) = ψ(x),

v(0, t) = v(l, t) = 0.

We extend them to the whole line

φext =


φ(x) 0 < x < l

−φ(−x) −l < x < 0

extended to be of period 2l.

and

ψext =


ψ(x) 0 < x < l

−ψ(−x) −l < x < 0

extended to be of period 2l.

So the formula of v is

v(x, t) =
1

2
[φext(x− ct) + φext(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψext(s)ds.

Case (0,0), x− ct ≥ 0, x+ ct ≤ l and t > 0:

v(x, t) =
1

2
[φ(x− ct) + φ(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψ(s)ds.

Case (0,1), x− ct ≥ 0 , x+ ct ≥ l and x ≤ l:

v(x, t) =
1

2
[φ(x− ct)− φ(2l − x− ct)] + 1

2c

∫ l

x−ct
ψ(s)ds− 1

2c

∫ 2l

l

ψ(2l − s)ds

=
1

2
[φ(x− ct)− φ(2l − x− ct)] + 1

2c

∫ l

x−ct
ψ(s)ds+

1

2c

∫ 2l−x−ct

l

ψ(s)ds

=
1

2
[φ(x− ct)− φ(2l − x− ct)] + 1

2c

∫ 2l−x−ct

x−ct
ψ(s)ds.
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Case (1,1), −l ≤ x− ct ≤ 0 and 2l ≥ x+ ct ≥ l:

v(x, t) =
1

2
[−φ(ct− x)− φ(2l − x− ct)] + 1

2c
[

∫ 0

x−ct
−ψ(−s)ds+

∫ l

0

ψ(s)ds−
∫ x+ct

l

ψ(2l − s)ds]

=
1

2
[−φ(ct− x)− φ(2l − x− ct)] + 1

2c

∫ 2l−x−ct

ct−x
ψ(s)ds.

Case (1,2), −l ≤ x− ct ≤ 0 , x+ ct ≥ 2l and x ≤ l:

v(x, t) =
1

2
[−φ(ct− x) + φ(x+ ct− 2l)]

= +
1

2c
[

∫ 0

x−ct
−ψ(−s)ds+

∫ l

0

ψ(s)ds−
∫ 2l

l

ψ(2l − s)ds+
∫ x+ct

2l

ψ(s− 2l)ds]

=
1

2
[−φ(ct− x) + φ(x+ ct− 2l)]− 1

2c

∫ ct−x

x+ct−2l
ψ(s)ds,

which depends only on the initial values on the interval [x+ ct− 2l, ct− x].
Similarly, you can derive the formula of v on each domain of Chapter 3

Figure 6 in the textbook.

2 Waves with a source

We are going to solve wave equations with a source term f on the whole line
utt − c2uxx = f(x, t), −∞ < x <∞
u(x, 0) = φ(x),

ut(x, 0) = ψ(x),

(1)

where f(x, t) is a given function. For instance, f(x, t) could be interpreted
as an external force acting on an in�nitely long vibrating string. This is an
inhomogeneous linear equation. If you can �nd a solution uf to the equation

utt − c2uxx = f(x, t) −∞ < x <∞
u(x, 0) = 0

ut(x, 0) = 0,

then with the solution uhom = 1
2 [φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct
x−ct ψ for the

homogeneous linear wave equation with the initial dates φ and ψ, you will get
the solution u = uf + uhom for the problem (1).

We will show that

uf (x, t) =
1

2c

∫ ∫
4
f =

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds, (2)

where 4 is the domain of dependence of (x, t) (characteristic triangle).
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The formula illustrates the e�ect of a force f on u(x, t) is obtained by simply
integrating f over the past history of the point (x, t) back to the initial time
t = 0. This is another example of the causality principle.

This is a well-posed problem.

• Existence is from the explicit formula.

• The uniqueness can be deduced from the Energy identity see Lec 5, section
2.

• The stability is from: suppose u1 is the solution with data (φ1, ψ1, f1) and
u2 is the solution with data (φ2, ψ2, f2). Then the di�erence u = u1 − u2
is given by the following formula due to linearity:

u(x, t) =
1

2
[φ1(x+ ct)− φ2(x+ ct) + φ1(x− ct)− φ2(x− ct)]

+
1

2c

∫ x+ct

x−ct
(ψ1 − ψ2)

+
1

2c

∫ ∫
4
(f1 − f2). (3)

De�ne the uniform norm

‖w‖ = max
−∞<x<∞

|w(x)|

and

‖w‖T = max
−∞<x<∞,0≤t≤T

|w(x, t)|

where T is �xed.
So from the formula (1), we have the estimate

‖u1 − u2‖T ≤ ‖φ1 − φ2‖+ T‖ψ1 − ψ2‖+
T 2

2
‖f1 − f2‖T .

If ‖φ1 − φ2‖, ‖ψ1 − ψ2‖ and ‖f1 − f2‖T are small, then ‖u1 − u2‖T is also
small. This proved the stability.

Now we start to prove the formula (2).

Proof. Method of Characteristic Coordinates. We intoduce coordinates ξ =
x+ct
2c , η = ct−x

2c such that

utt − c2uxx = uξη = f(cξ − cη, ξ + η).

Integrate along η then along ξ

u =

∫ ξ ∫ η

f(cξ′ − cη′, ξ′ + η′)dη′dξ′,
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where the lower limits of integration are arbitrary. We may make a particular
choice of the lower limits to �nd a particular solution in the domain 4′ =
{(ξ′, η′)|ξ′ + η′ ≥ 0, ξ′ ≤ ξ, η′ ≤ η}

u(x, t) =

∫ ξ

η

∫ η

−ξ′
f(cξ′ − cη′, ξ′ + η′)dη′dξ′

? =
1

2c

∫ ∫
4
f(x, t)dxdt.

Try to �gure out the last equality by yourself.
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