Lecture Five

January 24, 2021

1 Causality

For wave equation on the whole line with an initial position and an initial
velocity
Upp — CUgy =0 —00 < T < 400
{u(m,O) =¢(x)  w(z,0)=1()
We have derived the d’Alembert formula

1 1 z+ct
uwt) = gl +ola—ct+ oo [l
2 2c x—ct
Note if ¢ € C?(R) and ¥ € C'(R), the solution given above is the classical
solution of the wave equation on the whole line. If not, this may be some kind
of “week” solution which we will learn from the graduate PDE course.
We can draw the solution’s pictures from the formula:

Case one:

¢(z) =1 |z[<aq,

P(x) =0 |z[>a,

P(x) =0 —oo <z < +o0.
Case two:

H()=0 —oo<z< 00,
1 |z| <a,
$@)=0 o >a

The case one illustrates the effect of ¢ is a pair of waves traveling in either
direction at speed ¢ and at half the original amplitude. The effect of ¢ is a
wave spreading out at speed less than ¢ in both directions. Some part of the
wave may lag behind, but no part goes faster than speed c¢. This is called the
principle of causality.

The domain of influence of the point (z¢,0) is a sector between x + ¢t = xg
and x — ¢t = xg. It means the initial values only influence the domain.

The interval of dependence of the point (z,t) is the values of ¢ at the two
points = £ ct, and the values of ¢ within the interval [x — ct,x + ct]. From
d’Alembert formula tells us the value of u at (x,t) only depends on this domain.



The domain of dependence is bouned by the pair of characteristic lines that
pass through (x,t).

2 The law of conservation of energy

Consider the wave equations puy = Tug, for —co < & < oo. The energy
E = KFE + PFE of the wave equation can be defined by the sum of kinetic
energy KE = 1p fjooj ufdz and potential energy PE = 4T sz u2dz. We can

prove that % =0.

Proof. We assume that 1), ¢ vanish outside an interval {|x| < R}, such that all
the integrals converge.
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In this case, we can also prove the uniqueness. Suppose u and @ are solutions
of the wave equation, then v = u — @ satisfies
Vg — gy =0 —00 < < 400
v(z,0) =0 ve(x,0) = 0.

So we have % =0 and

I 1, [
§p/ vidx + iT/ vide = E(t) = E(0) = 0.

— 00 —0Q0

Thus v; = v, = 0. By v(z,0) = 0, we get v = 0 which means the uniqueness
of the wave equation. O

3 Reflections of waves

We use reflection method to get the Dirichlet problem to the wave equation on
the half-line (0, o).

Vet — Vg =0 O0<z<oo
v(z,0) = ¢(z), ve(2,0) = p(z), 0<z<o0
v(0,t) = 0.



Consider the odd extensions of both of the initial functions to the whole line
bodd(z) and ,qq(x) such that

o(x) 0<zxz<oo
Goaa(x) = <0 x =
—¢p(—x) —oco<z<O.
and
() 0<z<oo
’l/)odd(fl,‘) = 0 r=0

—(—z) —oo <z <0.
Let u(x,t) be the solution of the following wave equation on the whole line

Upt — C Ugzq = 0 —0 < x <00
u(x,0) = doqa(x), ug(z,0) = Yoga(x), —o0 <z < 00.

The ¢oqq and 1,qq are odd functions then the solution

1 x+ct
u(x,t) = §[¢odd(x + ct) + Goaalx — ct)] + 270/ ) Yodd(s)ds

—C

is also an odd function. Because

%[¢odd($ +ct) + Goda(r — ct)] = *%[%dd(*fﬂ —ct) + Goad(—x + ct)]
and
| petet | et
% )., Yodd(s)ds = %), Yodd(s)ds,
we have
u(z,t) = —u(—=z,t).

Thus define v(z,t) = u(z,t) for 0 < z < oo, the v is the precisely the solution
we are looking for.
For z > c|t| we have

x+ct
o) = SleGra)s-alty [ vwd )

2c —ct

In this case the value of v depends on the value of ¢ at the pair of points
x £ ct and on the values of ¢ in the interval between these points.



For 0 < z < c|t|, we have

v(x,t) =

In this

T+ct 0

sltara) ot =)+ 5 [ v+ g [ ol
ct+x

glotara) ot =)+ [ v 2

case the value of v depends on the value of ¢ at the pair of points

ct +x and on the values of ¢ in the interval between these points. Not depends
on the the values of ¢ in the interval (0, ct — z).
The complete solution is given by the pair of formulas (1) and (2).



