Lecture Four

January 20, 2021

We begin to solve one dimensional wave equations.

1 Wave equation on the whole line

Find the general solutions of the equation for ¢ # 0

Ut — gy =0 for —oo <z < 0.

Proof. Method one: We rewrite the equation into the form
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V= U+ CUyg.
From the equation (1), v satisfies a transport equation
vg —cv, = 0.
So we solve v from this equation

v(z,t) = h(x+ct),

where h is any function.
Then we try to solve u from the equation (2)

ug +cu, = h(x+ct).
First we solve homogenous linear equation
Uy +ciiy = 0.
So the general solution of this equation is

u(xz,t) = gz —ct).

+c—)u=0.



If we find a particular solution of the inhomogenous linear equation (3)

u(w,t) = f(z+ ct), where f/(s) = 1)

Then the general solution of the equation (3) is

u(z,t) = flx+ct)+ g(x — ct).

This is because of linearity suppose u!,u? are the solutions then u!' — u? is
the solution in the form of homogenous linear equation.
Method two: Find a characteristic coordinates (£, ) such that
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Now we get,
= &+
x = c€—on.

If we denote @(n, &) = u(x,t), by the chain rule
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And
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= Uy — ClUty + CUyr — (22um =0.
So we get



We rewrite it back to the orginal system

s ct+x ., ct—x
t =
uwt) = D+
= flet+z)+g(x—ct),
where f and g are any functions. O

2 Initial value problem

Find the solution for the initial value problem

U = CUgy —0 < T <0
U(CL‘, 0) = ¢($) ut($70) = ’(/J($),
where ¢ and v are given functions.

Proof. The general form of solutions to the wave equation on the whole line is

u(z,y) = flct+z)+g(ct—x). (4)
Setting ¢t = 0, we have
w(@,0)=o¢(x) = flz)+g(-2) (5)

ug(z,0) =P(x) = cf'(x)+cg'(—x).
Differentiating the first equation to get

¢'(z) = fl(2)—g(-2)

We can solve f’and ¢’ from the above equations
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We integrate once to get f,g
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where ¢y, co are constants.
Because of equation (5), we have ¢; = ca. So the solution is

1 1 ct+x , , 1 1 —ct+x , ,
wat) = gora)+g [ v+ peara) -5 [ v
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This formula is due to d’Alembert which is called d’Alembert formula. O



