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1 Inhomogeneous �rst order PDE

Example 1. du
dt = P (t)Q(u) then

∫
du

Q(u) =
∫
P (t)dt + C. For example, du

dt =

− 4
5u.

Proof. From the formula, we have

log u = −4

5
t+ c

u = ec−
4t
5 .

Example 2. du
dt + p(t)u = q(t).

Proof. Find f(t) such that

f
du

dt
+ fp(t)u = fq(t)

d(fu)

dt
− udf

dt
+ fp(t)u = fq(t).

If df
dt = fp(t), we have ∫

df

f
=

∫
p(t)dt+ c

log f =

∫
p(t)dt+ c.

If we choose f = e
∫
p(t)dt,

d(e
∫
p(t)dtu)

dt
= e

∫
p(t)dtq(t).

So we have

u(t) = e−
∫
p(t)dt[

∫
e
∫
p(t)dtq(t)dt+ c]. (1)
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For example, if 5ut + su = st we get

u(t, s) = e−
∫

s
5dt[

∫
e
∫

s
5dt

st

5
dt+ f(s)]

= e−
st
5 [

∫
ez

5z

s
dz + f(s)]

= e−
st
5 [te

st
5 − 5

s
e

st
5 + f(s)]

= t− 5

s
+ f(s)e−

st
5 .

Example 3. Solve the inhomogeneous quation

ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2.

Proof. Method one: Make a change of coordinates

t = x+ 2y s = 2x− y.

Then we have by the chain rule

ux = ut + 2us

uy = 2ut − us.

Then

ux + 2uy + (2x− y)u = ut + 2us + 2(2ut − us) + su

= 5ut + su

= (2x− y)(x+ 2y)

= st.

So we get a equation of the form

5ut + su = st.

So we have

u = t− 5

s
+ f(s)e−

st
5

= x+ 2y − 5

2x− y
+ f(2x− y)e−

2x2+3xy−2y2

5 ,

where f is arbitrary.
Method two: Let

z(t) := u(x+ t, y + 2t).

2



For any �xed x, y, we have the equation

dz

dt
+ (2x− y)z = (2x− y)(x+ 2y + 5t).

For �xed x, y, the above equation is a ODE which depends on t. By the
formula (1), we can solve z by

z(t)− (x+ t)− 2(y + 2t) +
5

2x− y
= e−(2x−y)t[z(0)− (x+ 2y) +

5

2x− y
].

In terms of u, it means

u(x+ t, y + 2t)− [x+ t+ 2(y + 2t)] +
5

2(x+ t)− (y + 2t)
= e−(2x−y)t[u(x, y)− (x+ 2y) +

5

2x− y
].

Let t = −x, we have

u(0, y − 2x)− 2(y − 2x)− 5

y − 2x
= ex(2x−y)[u(x, y)− (x+ 2y) +

5

2x− y
].

Denote the left hand side which only depends on y − 2x by

f̃(y − 2x) = u(0, y − 2x)− 2(y − 2x)− 5

y − 2x
.

So the general solution is

u(x, y) = x+ 2y − 5

2x− y
+ f̃(y − 2x)e−x(2x−y),

for any function f̃ .
We remark that the solution is essentially the same as the solution we get

from the �rst method because the f and f̃ are arbitary funtions.

2 Initial and boundary conditions

Because PDEs typically have so many solutions. In real world problems, the
PDEs often have additional conditions such as initial conditions and boundary
conditions.

An initial condition speci�es the physical state at a particular time t0. For
example for di�usion equation{

ut(x, t) = uxx(x, t), −∞ < x <∞, t > t0

u(x, t0) = φ(x),

where φ(x) is a given function.
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For the wave equation there is a pair of initial conditions
utt(x, t) = uxx(x, t),

u(x, t0) = φ(x),

ut(x, t0) = ψ(x),

where φ(x) is the initial position and ψ(x) is the initial velocity.
In some physical situation, it is necessary to specify some boundary condition

if the solution is to be determined. Suppose D is the domain in which the PDE
is valid. On the boundary ∂D, the three most important kinds of boundary
conditions are:

• u is speci�ed (�Dirichlet condition�),

• the normal derivative ∂u
∂n is speci�ed (�Neumann condition�), if ∂u

∂n = 0, it
is called homogeneous.

• ∂u
∂n + au is speci�ed (�Robin condition�).

For example, the Dirichlet and Neumann boundary of Laplace equation{
4u = 0 Ω

u = ϕ(x). ∂Ω

and {
4u = 1, Ω
∂u
∂n = ϕ(x). ∂Ω

Example 4. Case 1. Suppose the object D through which the heat is �owing
is perfectly insulated, then no heat �ows across the boundary and we have the
Neumann condition ∂u

∂n = 0.
Case 2. If D was immersed in a large reservoir of speci�ed temperaure g(t)

and there were perfect thermal conduction, then we have the Dirichlet condition
u = g(t) on ∂D.

Sometimes we need to impose initial condition and boundary condition to-
gether as following 

ut = uxx(x, t) 0 ≤ x ≤ l, t > t0

u(x, t0) = φ(x) 0 ≤ x ≤ l
u(0, t) = g(t)

u(l, t) = h(t),

(2)

where φ(x), g(t) and h(t) are known functions.
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3 Well-posed problems:

Well-Posed Problems:

1. Existence: There exists at least one solution u(x, t) satisfying all these
conditions.

2. Uniqueness: There is at most one solution.

3. Stability: If the data are changed a little, the corresponding solution
changed only a little.

The mathematician tries to prove that a given problem is or is not well-posed.
If too few auxiliary conditions are imposed, then there may be more than

one solutions (nonuniquess). The problem is called underdetermined.
If too many auxiliary conditions, there may be no solution at all (nonexis-

tence). The problem is called overdetermined.
Stability is usefull in Numerical study. Sometimes, you can't �nd the solution

precisely. You can only measure the data in some approximate sense.
For example:

utt − uxx = f(x, t) 0 < x < L,

u(x.0) = φ(x), ut(x, 0) = ψ(x),

u(0, t) = g(t), u(L, t) = h(t).

The data of the problem consist of �ve functions of f, φ, ψ, g, h.
Stability means that if f, φ, ψ, g, h are perturbed, then u is also changed only

slightly.

Example 5. The di�usion equation is well-posed for t > 0 and ill-posed for
t < 0.

Example 6. It is not a well-posed problem to specify both u and ∂u
∂n on the

boundary of D for Laplace equation.

uxx + uyy = 0 in D = {−∞ < x <∞, 0 < y <∞}.

One of its solutions is

u(x, y) = 1
ne
−
√
n sinnx sinhny.

If we prescribed the boundary data to be

u(x, 0) = 0

∂u

∂y
(x, 0) = e−

√
n sinnx.

If n tends to ∞ then ∂u
∂y (x, 0) tends to zero. But for y 6= 0 the solutions

u(x, y) do not tend to zero as n→∞.
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4 Types of second order PDE

Let's consider the PDE

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0.

This is a linear equation of order two in two variables with six real constant
coe�cients.

Theorem 7. By a linear transformation of the independent variables, the equa-

tion can be reduced to one of three forms, as follows.

• Elliptic case: if a212 < a11a22, it is reducible to

uxx + uyy + · · · = 0

(where · · · denotes terms of order 1 or 0.

• Hyperbolic case: if a212 > a11a22, it is reducible to

uxx − uyy + · · · = 0.

• Parabolic case: if a212 = a11a22,it is reducible to

uxx + · · · = 0

(unless a11 = a12 = a22 = 0).

De�nition 8. The PDE

n∑
i,j=1

aijuij +

n∑
i=1

aiui + a0u = 0,

(with real constants aij , ai and a0. Assume that aij = aji) is called ELLIP-
TIC if all the eigenvalues are positive or all are negative. The PDE is called
HYPERBOLIC if none of the eigenvalues vanish and one of them has the op-
posite sign from the n − 1 others. If none vanish, but at least two of them are
positive and at least two are negative, it is called ULTRAHYPERBOLIC. If
exactly one of the eigenvalues is zero and all the others have the same sign, the
PDE is called PARABOLIC.
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