Lecture 23

April 22, 2021

1 Green’s function in Half-Space and Ball

From i) and iii) The Green’s function G(z, () equals the fundamental solution
—Tx7s—zo7 Plus a harmonic function H (z, o).
From ii) the boundary value vanishes. So we need to nd a function H(z, z¢)

which satises the Dirichelet problem
AH(-,xo) =0 1in Q,
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In some particular domains, we can find H(z,x) by reflection method.

When Q = {z > 0}, denote Ty = (20,Y0,20). The reflection point with
respect to the plane {z = 0} is Z4* = (0, Yo, —20) Which is not in €. So let
H(?,:c_g) = ml—zTu*\ which is harmonic in . Moreover, on the boundary 952,
we can check that
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So the Green’s function on half-space is
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When Q = {|z| < a}, the reflection point of Z{ with respect to the sphere
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is xy* = ﬁ We can check that A4w\xo\| = = 0in  and TEE=]
m on 0. So the Green’s function on the sphere is
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On 9B,(0) we compute
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Because |z — o] = |%x — %| on 0B,(0), we have
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Thus by Theorem 2, we get the Poisson formula in dimension three
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