Lecture 23

April 22, 2021

1 Green's function in Half-Space and Ball

From i) and iii) The Green's function $G(x,x_0)$ equals the fundamental solution $-\frac{1}{4\pi|x-x_0|}$ plus a harmonic function $H(x,x_0)$.

From ii) the boundary value vanishes. So we need to nd a function $H(x, x_0)$ which satisfies the Dirichelet problem

$$\Delta H(\cdot, x_0) = 0 \quad in \quad \Omega,$$

$$H(\overrightarrow{x}, \overrightarrow{x_0}) = -\frac{1}{4\pi |x - x_0|} \quad on \quad \partial \Omega.$$

In some particular domains, we can find $H(x, x_0)$ by reflection method.

When $\Omega=\{z>0\}$, denote $\overrightarrow{x_0}=(x_0,y_0,z_0)$. The reflection point with respect to the plane $\{z=0\}$ is $\overrightarrow{x_0}^*=(x_0,y_0,-z_0)$ which is not in Ω . So let $H(\overrightarrow{x},\overrightarrow{x_0})=\frac{1}{4\pi|\overrightarrow{x}-\overrightarrow{x_0}^*|}$ which is harmonic in Ω . Moreover, on the boundary $\partial\Omega$, we can check that

$$H(\overrightarrow{x},\overrightarrow{x_0}) = \frac{1}{4\pi\sqrt{(x-x_0)^2 + (y-y_0)^2 + z^2}} \quad = \quad \frac{1}{4\pi|\overrightarrow{x}-\overrightarrow{x_0}|}.$$

So the Green's function on half-space is

$$G(\overrightarrow{x}, \overrightarrow{x_0}) = -\frac{1}{4\pi |\overrightarrow{x} - \overrightarrow{x_0}|} + \frac{1}{4\pi |\overrightarrow{x} - \overrightarrow{x_0}^*|}.$$

When $\Omega=\{|x|< a\}$, the reflection point of $\overrightarrow{x_0}$ with respect to the sphere is $\overrightarrow{x_0}^*=\frac{a^2\overrightarrow{x_0}}{|\overrightarrow{x_0}|^2}$. We can check that $\triangle \frac{a}{4\pi|\overrightarrow{x_0}||\overrightarrow{x}-\overrightarrow{x_0}^*|}=0$ in Ω and $\frac{a}{4\pi|\overrightarrow{x_0}||\overrightarrow{x}-\overrightarrow{x_0}^*|}=\frac{1}{4\pi|\overrightarrow{x}-\overrightarrow{x_0}|}$ on $\partial\Omega$. So the Green's function on the sphere is

$$G(\overrightarrow{x},\overrightarrow{x_0}) = -\frac{1}{4\pi |\overrightarrow{x} - \overrightarrow{x_0}|} + \frac{a}{4\pi |\overrightarrow{x_0}||\overrightarrow{x} - \overrightarrow{x_0}^*|} \quad = \quad -\frac{1}{4\pi |\overrightarrow{x} - \overrightarrow{x_0}|} + \frac{1}{4\pi |\frac{|\overrightarrow{x_0}|}{a}\overrightarrow{x} - \frac{a\overrightarrow{x_0}}{|\overrightarrow{x_0}|}|}.$$

On $\partial B_a(0)$ we compute

$$\frac{\partial G(x, x_0)}{\partial \overrightarrow{n}} = \sum_{i=1}^{3} \frac{x^i}{r} \frac{\partial}{\partial x^i} G(x, x_0)$$

$$= \sum_{i=1}^{3} \frac{x^i}{r} \left[\frac{(x^i - x_0^i)}{4\pi |x - x_0|^3} - \frac{|x_0|}{a} \frac{\frac{|x_0|}{a} x^i - \frac{a}{|x_0|} x_0^i}{4\pi |\frac{|x_0|}{a} x - \frac{ax_0}{|x_0|}|^3} \right].$$

Because $|x-x_0|=|\frac{|x_0|}{a}x-\frac{ax_0}{|x_0|}|$ on $\partial B_a(0)$, we have

$$\frac{\partial G(x,x_0)}{\partial \overrightarrow{n}} = \frac{|x|^2 - \sum x^i x_0^i - \frac{|x_0|^2}{a^2} |x|^2 + \sum x^i x_0^i}{4\pi r |x - x_0|^3}$$
$$= \frac{a^2 - |x_0|^2}{a^3} \frac{|x|^2}{4\pi |x - x_0|^3}.$$

Thus by Theorem 2, we get the Poisson formula in dimension three

$$u(x_0) = \frac{a^2 - |x_0|^2}{4\pi a} \iint_{\partial B_{\alpha}(0)} \frac{u(x)}{|x - x_0|^3} dS.$$