
Lecture 22

April 19, 2021

1 Green's functions

The main goal of this chapter is to use Green's identities to study the Dirichlet
problem. The following representation formula we obtained in the last lecture
cannot be used directly to solve the Dirichlet problem.

u(x0) =

∫∫
∂Ω

[−u(x)
∂

∂−→n
(

1

|x− x0|
) +

1

|x− x0|
∂u

∂−→n
]
dSx
4π

.

Because we do not to know the value ∂u
∂−→n on the boundary.

De�nition 1. The Green's function G(x) for the operator −4 and the domain
Ω ∈ R3 at the point x0 ∈ Ω is a function de�ned for x ∈ Ω such that:

i) G(x) possesses continuous second derivatives and 4G = 0 in Ω, except at
the point x = x0.

ii) G(x) = 0 for x ∈ ∂Ω.
iii) The function G(x) + 1

4π|x−x0| is �nite at x0 and has continuous second

derivatives everywhere and is harmonic at x0.
We usually denote it by G(x, x0).

Theorem 2. If G(x, x0) is the Green's function, then the solution of the Dirich-
let problem (4u = 0) is given by the formula

u(x0) =

∫∫
∂Ω

u(x)
∂G(x, x0)

∂−→n
dS.

Proof. Let us recall the Green's second identity which is∫∫∫
Ω

(u4v − v4u)dx =

∫∫
∂Ω

(u
∂v

∂−→n
− v ∂u

∂−→n
)dS.

Let v(x) = − 1
4π|x−x0| −G(x, x0) and u is a harmonic function. Then by iii)

and i) we have 4v = 0 in Ω. So from the Green's second identity, we have

0 =

∫∫
∂Ω

(u
∂v

∂−→n
− v ∂u

∂−→n
)dS =

∫∫
∂Ω

(−u ∂

∂−→n
(

1

4π|x− x0|
)− u ∂

∂−→n
G(x, x0)− v ∂u

∂−→n
)dS.
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From ii) G(x) = 0 on the boundary, we have∫∫
∂Ω

u(x)
∂

∂−→n
G(x, x0) =

∫∫
∂Ω

−u ∂

∂−→n
(

1

4π|x− x0|
) +

1

4π|x− x0|
∂u

∂−→n
dS

= u(x0).

The last equality comes from the representation formula.

Proposition 3. If we can show that there exists a Green's function, then it is
unique. And it is always symmetric:

G(z, y) = G(y, z) for z 6= y.

Proof. The uniqueness is left as an exercise. Let u(x) = G(x, y) and v(x) =
G(x, z) and substitute them into the Green's second identity in the domain
Dε := Ω\(Bε(z) ∪Bε(y)). Here we choose ε small such that Bε(z) ∩Bε(y) = ∅.
We have from i) and ii) that

0 =

∫∫∫
Dε

(G(x, y)4G(x, z)−G(x, z)4G(x, y))dx =∫∫
∂Ω

+

∫∫
∂Bε(z)

+

∫∫
∂Bε(y)

=∫∫
∂Bε(z)

[−G(x, y)
∂

∂−→n
G(x, z) +G(x, z)

∂

∂−→n
G(x, y)]dS

+

∫∫
∂Bε(y)

[−G(x, y)
∂

∂−→n
G(x, z) +G(x, z)

∂

∂−→n
G(x, y)]dS. (1)

Because G(x, z) = − 1
4π|x−z| +H(x, z) where H(·, z) is a harmonic function

in Bε(z). We have∫∫
∂Bε(z)

[G(x, y)
∂

∂−→n
G(x, z)−G(x, z)

∂

∂−→n
G(x, y)]dx =∫∫

∂Bε(z)

[G(x, y)
∂

∂−→n
(− 1

4π|x− z|
+H(x, z))dx

−
∫∫

∂Bε(z)

[(− 1

4π|x− z|
+H(x, z))

∂

∂−→n
G(x, y)]dx =∫∫

∂Bε(z)

[G(x, y)
∂

∂−→n
(− 1

4π|x− z|
) +

1

4π|x− z|
∂

∂−→n
G(x, y)dx.

So as before, we have

lim
ε→0

∫∫
∂Bε(z)

(G(x, y)
∂

∂−→n
(− 1

4π|x− z|
) +

1

4π|x− z|
∂G(x, y)

∂−→n
)dSx = G(z, y).

So we get

lim
ε→0

∫∫
∂Bε(z)

[G(x, y)
∂

∂−→n
G(x, z)−G(x, z)

∂

∂−→n
G(x, y)]dS = G(z, y).
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Similarly,

lim
ε→0

∫∫
∂Bε(y)

[G(x, y)
∂

∂−→n
G(x, z)−G(x, z)

∂

∂−→n
G(x, y)]dS. = −G(y, z).

From (1), we have for z 6= y that

G(z, y) = G(y, z).

Theorem 4. The solution of the problem

4u = f in Ω

u = h on ∂Ω

is given by

u(x0) =

∫∫
∂Ω

h(x)
∂G(x, x0)

∂−→n
dS +

∫∫∫
Ω

f(x)G(x, x0)dx.

Proof. By the Green's second identity, we have for the domain Ωε := Ω\Bε(x0)∫∫∫
Ωε

4u(x)G(x, x0)− u4G(x, x0)dx =

∫∫
∂Ω

G(x, x0)
∂

∂−→n
u(x)− u(x)

∂G(x, x0)

∂−→n
dS

+

∫∫
∂Bε(x0)

G(x, x0)
∂

∂−→n
u(x)− u(x)

∂G(x, x0)

∂−→n
dS

= −
∫∫

∂Ω

u(x)
∂G(x, x0)

∂−→n
dS

+

∫∫
∂Bε(x0)

1

4π|x− z|
∂

∂−→n
u(x) + u(x)

∂

∂−→n
(− 1

4π|x− z|
)dS

−
∫∫

∂Bε(x0)

H(x, x0)
∂

∂−→n
u(x) + u(x)

∂

∂−→n
H(x, x0)dS.

Let ε→ 0, we have

−
∫∫

∂Bε(x0)

H(x, x0)
∂

∂−→n
u(x) + u(x)

∂

∂−→n
H(x, x0)dS → 0.

So let ε→ 0, we get∫∫∫
Ω

f(x)G(x, x0)dx = −
∫∫

∂Ω

h(x)
∂G(x, x0)

∂−→n
dS + u(x0).
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