Lecture 19

March 25, 2021

Definition 1. We say that an infinite series $\sum_{n=1}^{\infty} f_n(x)$ converges to f(x) pointwise in (a, b) if it converges to f(x) for each a < x < b. That is, for each a < x < b we have

$$|f(x) - \sum_{n=1}^{N} f_n(x)| \to 0 \quad as \ N \to \infty.$$

Theorem 2. (Pointwise Convergence of Classical Fourier Series)

i) The classical Fourier series (full or sine or cosine) converges to f(x) pointwise on (a, b) provided that f(x) is a continuous function on $a \le x \le b$ and f'(x) is piecewise continuous on $a \le x \le b$.

ii) More generally, if f(x) itself is only piecewise continuous on $a \le x \le b$ and f'(x) is also piecewise continuous on $a \le x \le b$, then the classical Fourier series converges at every point $x \ (-\infty < x < \infty)$.

The sum is

$$\sum_{n} A_n X_n(x) = \frac{1}{2} [f(x+) + f(x-)]$$

for all a < x < b.

The sum is $\frac{1}{2}[f_{ext}(x+) + f_{ext}(x-)]$ for all $-\infty < x < \infty$, where $f_{ext}(x)$ is the extended function (periodic, odd periodic or even periodic).

Definition 3. We say that the series converges uniformly to f(x) in [a, b] if

$$\max_{a \le x \le b} |f(x) - \sum_{n=1}^{N} f_n(x)| \to 0,$$

as $N \to \infty$.

Theorem 4. (Uniform Convergence) The classical Fourier series (full, sine, and cosine) converges to f(x) uniformly on [a, b] provided that

i) f(x), f'(x) exist and are continuous for $a \le x \le b$ and

ii) f(x) satisfies the given boundary conditions.

Example 5. The Fourier sine series of the function $f(x) \equiv 1$ on the interval $(0, \pi)$ is

$$\sum_{n \text{ odd}} \frac{4}{n\pi} \sin nx. \tag{1}$$

Although it converges at each point, this series does not converge uniformly on $[0, \pi]$. One reason is that the series equals zero at both endpoints (0 and π) but the function is 1 there. Condition (ii) of Theorem 4 is not satisfied.

The Fourier series (1) can not be differentiated term by term.

Definition 6. We say the series converges in the mean-square (or L^2) sense to f(x) in (a, b) if

$$E_N = \int_a^b |f(x) - \sum_{n=1}^N f_n(x)|^2 dx \to 0$$

as $N \to \infty$.

Theorem 7. $(L^2 \ Convergence)$ The Fourier series converges to f(x) in the mean-square sense in (a, b) provided only that f(x) is any function for which

$$\int_{a}^{b} |f(x)|^2 dx$$

is finite.

Theorem 8. The Fourier series of f(x) converges to f(x) in the mean-square sense if and only if

$$\sum_{n=1}^{\infty} |A_n|^2 \int_a^b |X_n(x)|^2 dx = \int_a^b |f(x)|^2 dx.$$
 (2)

Proof. Mean-square convergence means that the remainder

$$E_N = \|f\|^2 - \sum_{n \le N} |A_n|^2 \|X_n\|^2 \to 0.$$

which in turn means (2), known as Parseval's equality.

Corollary 9. If $\int_a^b |f(x)|^2 dx$ is finite, then the Parseval equality (2) is true. **Example 10.** Consider once again the Fourier series

$$\sum_{n \text{ odd}} \frac{4}{n\pi} \sin nx.$$

Parseval's equality asserts that

$$\sum_{n \text{ odd}} (\frac{4}{n\pi})^2 \int_0^\pi \sin^2 nx dx = \int_0^\pi 1^2 dx.$$

That is

$$\sum_{n \text{ odd}} (\frac{4}{n\pi})^2 \frac{\pi}{2} = \pi.$$

In other words,

$$\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}$$