Lecture 18

1 Laplace equation in rectangles and cubes

We first solve laplace equations in these particular domains by separating the
variables.

Example 1. Solve the following Laplace equation in the rectangle with the
boundary condition:

Uz (2, Y) + Uyy(2,y) =0 in D={0<2z<a,0<y<b}
U(O,y) = ux(a,y) - uy(xvo) +U(:L‘,O) =0
u(z,b) = g(x).

Proof. Suppose u(z,y) = X(2)Y (y), then from Laplace equation we have the
equation for X and Y

X"z)+ XX (z)=0 in 0<z<a (1)
and
Y'(y) =AY (y) =0 in 0<y<b (2)

Here )\ is a constant.
From the boundary condition, we need to solve a eigenvalue problem

X"z)+ XX (x)=0 in 0<z<a
X(0) = X'(a) = 0.

We know from the previous lecture that there are only positive eigenvalues
for this problem. So we get A\, = 2 = (n + %)27% for n = 0,1,2,--- and
X (z) =sin @

So the corresponding solutions for Y are

Kl(y) = Acoshf,y + Bsinh f,y.

The boundary condition wu,(x,0) + u(z,0) = 0 infers that BS,, + A,, = 0.
Without of generality letting B = —1, we have A = 3,,.



So we have

u(z,y) = Z A, (B cosh B,y — sinh B,y) sin B, x. (3)
n=0
So
u(z,b) Z Ay (By, cosh B,b — sinh (,,) sin 5, .
n=0

Then from the last boundary condition w(z,b) = g(x). A, (B cosh8,b —

sinh 3,,b) is the coefficients of the Fourier sine series. The solution to the problem
is given by (3) with the coefficients given by

2 a
A, = (Bn coshﬂnb—sinhﬁnb)*la/ g(z) sin Bpxdz.
0

O
Example 2. Solve the following Laplace equation in the cubes with the bound-
ary condition:

UM(%%Z)+uyy($7y,z)+uzz($,llaz)ZO m DZ{OﬁxﬁﬂyoﬁySW,OSZSW}
u(0,y,2) = u(z,0,2) = u(z, 7, 2) = u(z,y,0) = u(z,y,m) =0
u(m,y,z) = g(y, 2).
Proof. Suppose u(z,y,z) = X (2)Y (y)Z(z). From Laplace equation we have
X/I Y// ZI/
@ YW, 76,
X(z) Y@  Z(2)
Assuming \ = X))y = Y W)

X@) = V)
which satisfy A+ p+~=0.

and v = ZZ/’((ZZ)) , we have )\, p, v are constants

Combining the boundary conditionsu(z,0, z) = u(x,,2z) = 0 or u(z,y,0) =
u(z,y,m) = 0, we get 4 = —m? and v = —n? where m = 1,2,
1,2,---. Then the solutions to = ()

- and n =
2 2
X () =n“+m*~ are

X(z) = Apnsinh(v/m? + n2z) + By cosh(v/m?2 + n2z).

From the boundary condition «(0,y, z) = 0, we have B,,, = 0.
So the solution is

u(z,y,2) = Z Z Apn sinh(v/m? + n2x) sinmy sinnz

n=1m=1

with the coefficients

A 1 / i / " 4(y, ) sinmy sin nzdyd
mn = ,2)smmySImnz zZ.
m2sinh(vm? + n?m) Jo Jo g 4 Y




Here we used the eigenfunctions {sin my-sinnz},=12... n=12,... are mutually
orthogonal on the square {0 < y < 7,0 < z < 7} and the integral

™ ™ 2
/ / (sinmysinnz)?dydz = T
0o Jo 4

2 Rotationally invariant solutions

Proposition 3. The Laplace equation Au = 0 is invariant under all rigid
motions (translation and rotation).

We are going to find rotationally invariant solutions to the Laplace equation
in dimension two or three.

First we write the Laplace equation in polar coordinates. In dimension two,
letting = rcosf and y = rsin @, we have

@ 10 18
ox2  Oy2  Or2  ror 12062

The harmonic functions that themselves are rotationally invariant are
u(r) = clogr+ ca.

In dimension three, letting x = rsinf cos ¢, y = rsinfsin ¢ and z = r cos 6,
we have

82+62+82 82+28+ 1 6(.96)+ 1 0?

—t =+ = —+-—+—5——=6nl=)+ —5——.

ox?  Oy? 022 or?2  rdr  r2sin6 00 90" " r2sin? 0 0¢?

The harmonic functions that themselves are rotationally invariant are

u(r) = —cr 4 e

The functions logr and ! are fundamental solutions to The Laplace equa-
tion Au = 0 in dimension two or dimension three.



Poisson’s Formula

We are going to use separation of the variable to solve the Dirichlet problem
for Laplace equation in a disk. The solution is represented by the Poisson’s
formula.

Let’s consider the problem

Upe(T,y) + uyy(2,y) =0 for @ +y* <a?
u=nh(0) for x*+y*=d>

In polar coordinates x = r cosf, y = rsin#, the equation is
1
Uy + ;uT + ﬁU;@Q = Ugy + Uyy = 0. (1)

So separating variables in polar coordinates: u(z,y) = u(r,8) = R(r)O(6).
From equation (1), we have ODEs for R and © which are

0"(0) +AO(0) = 0
and
TQRH(T) —|—7“R/(7“) —AR(r) = 0 (2)

for a constant \.
For © we require periodic BCs

OO0 +21) =0(0) for —oo<l<o0.

So we only have positive eigenvalues and a zero eigenvalue.
When A\ = 0, we have from the periodic BCs

In this case, the solution to the equation (2) is

R(r) = clogr+ca.



The solution « in this case is

u =

RO = A(cq logr + c32).

Because of the boundedness of the solution at the origin point where r = 0
and lir% logr = —o0, we need to let ¢; = 0. So
r—

in this case for another constant Ay.

When A = 82 > 0, we have from the periodic BCs 8 = n and
o(0)

Acosnb + Bsinnb
where n =1,2,3,---.

In this case, the solution to the equation (2) is

R(r)

Cr™ + Dr—"™.
The solution « in this case is

u = RO =(Cr"+ Dr=")(Acosnf + Bsinnf).

and lim »—"

Because of the boundedness of the solution at the origin point where r = 0
L = 00, we need to let D = 0. So
r—

u = 7r"(A4,cosnb + B, sinnd)
in this case for another constant A,, and B,,.
By linear homogeneity, we have

1 o0
u(r,0) = §AO + Z r" (A, cosnf + B, sinnf). (3)
n=1

From the boundary condition u(a, ) = h(6). The coefficients are determined
by Fourier coefficients of the function h(6). For n =1,2,3,---

1 27
A = = [ he)cosnoao,

and

1 27

ma 0



If we plug A,,, B,, and Ay into u, the series (3) can be summed explicitly.
In fact

27 o0 n 27
u(r,0) = /0 h(qﬁ)% + Z ﬂ%n/ h(p){cos ng cosnb + sin ng sin nh}de

d
= {1+QZ " cosn(f — (b) ¢
0
Because
in(0—o) —in(0—¢)
‘ +2€ = cosn(d — ¢),
we have
> T . s r .
1 = \nin(0—¢) \n _—in(0—¢)
+2Z "cosn(f — ¢) 1+Z(a) e +Z(a) e
n=1 n=1
gei(eﬂb) 2671‘(0—@

- a9 1 Lo i0—0)

are'(0=9) _ 9p2
a2 472 — arei0=9) — gre—i(6—9) 1
a® —r?

a? + 12 — 2arcos(0 — @)’

So the solution can be written into the form

1 27 2 2

a*—r
u(r,0) = 27 Jo h(¢)a2+r2 2ar cos(6 — @)

de.

This formula is known as Poisson’s formula.
In the usual (x,y) coordinate, let the point X = (z,y) = (r cos 6, rsin ) and
X' = (2',y') = (acos ¢,asin ). We have by Law of Cosine

X - X'|? = a®+7r%—2arcos(d — ¢).

The arc length element on the circle is ds’ = ad$. So the Poisson’s formula
is also wrriten as

a® — | X|? w(X’)
X) = ———— —————ds.
U( ) 2ma /lX’—a |X — _.Xv/|2 5
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