
Lecture 18

1 Laplace equation in rectangles and cubes

We �rst solve laplace equations in these particular domains by separating the
variables.

Example 1. Solve the following Laplace equation in the rectangle with the
boundary condition:

uxx(x, y) + uyy(x, y) = 0 in D = {0 ≤ x ≤ a, 0 ≤ y ≤ b}
u(0, y) = ux(a, y) = uy(x, 0) + u(x, 0) = 0

u(x, b) = g(x).

Proof. Suppose u(x, y) = X(x)Y (y), then from Laplace equation we have the
equation for X and Y

X ′′(x) + λX(x) = 0 in 0 ≤ x ≤ a (1)

and

Y ′′(y)− λY (y) = 0 in 0 ≤ y ≤ b. (2)

Here λ is a constant.
From the boundary condition, we need to solve a eigenvalue problem

X ′′(x) + λX(x) = 0 in 0 ≤ x ≤ a
X(0) = X ′(a) = 0.

We know from the previous lecture that there are only positive eigenvalues

for this problem. So we get λn = β2
n = (n + 1

2 )
2 π2

a2 for n = 0, 1, 2, · · · and
Xn(x) = sin

(n+ 1
2 )πx

a .
So the corresponding solutions for Y are

Yn(y) = A coshβny +B sinhβny.

The boundary condition uy(x, 0) + u(x, 0) = 0 infers that Bβn + An = 0.
Without of generality letting B = −1, we have A = βn.
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So we have

u(x, y) =

∞∑
n=0

An(βn coshβny − sinhβny) sinβnx. (3)

So

u(x, b) = =

∞∑
n=0

An(βn coshβnb− sinhβnb) sinβnx.

Then from the last boundary condition u(x, b) = g(x). An(βn coshβnb −
sinhβnb) is the coe�cients of the Fourier sine series. The solution to the problem
is given by (3) with the coe�cients given by

An = (βn coshβnb− sinhβnb)
−1 2

a

∫ a

0

g(x) sinβnxdx.

Example 2. Solve the following Laplace equation in the cubes with the bound-
ary condition:

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) = 0 in D = {0 ≤ x ≤ π, 0 ≤ y ≤ π, 0 ≤ z ≤ π}
u(0, y, z) = u(x, 0, z) = u(x, π, z) = u(x, y, 0) = u(x, y, π) = 0

u(π, y, z) = g(y, z).

Proof. Suppose u(x, y, z) = X(x)Y (y)Z(z). From Laplace equation we have

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)

Z(z)
= 0.

Assuming λ = X′′(x)
X(x) , µ = Y ′′(y)

Y (y) and γ = Z′′(z)
Z(z) , we have λ, µ, γ are constants

which satisfy λ+ µ+ γ = 0.
Combining the boundary conditionsu(x, 0, z) = u(x, π, z) = 0 or u(x, y, 0) =

u(x, y, π) = 0, we get µ = −m2 and γ = −n2 where m = 1, 2, · · · and n =

1, 2, · · · . Then the solutions to X′′(x)
X(x) = n2 +m2 are

X(x) = Amn sinh(
√
m2 + n2x) +Bmn cosh(

√
m2 + n2x).

From the boundary condition u(0, y, z) = 0, we have Bmn = 0.
So the solution is

u(x, y, z) =

∞∑
n=1

∞∑
m=1

Amn sinh(
√
m2 + n2x) sinmy sinnz

with the coe�cients

Amn =
4

π2 sinh(
√
m2 + n2π)

∫ π

0

∫ π

0

g(y, z) sinmy sinnzdydz.
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Here we used the eigenfunctions {sinmy ·sinnz}m=1,2··· ,n=1,2,··· are mutually
orthogonal on the square {0 < y < π, 0 < z < π} and the integral∫ π

0

∫ π

0

(sinmy sinnz)2dydz =
π2

4
.

2 Rotationally invariant solutions

Proposition 3. The Laplace equation 4u = 0 is invariant under all rigid
motions (translation and rotation).

We are going to �nd rotationally invariant solutions to the Laplace equation
in dimension two or three.

First we write the Laplace equation in polar coordinates. In dimension two,
letting x = r cos θ and y = r sin θ, we have

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

The harmonic functions that themselves are rotationally invariant are

u(r) = c1 log r + c2.

In dimension three, letting x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ,
we have

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
.

The harmonic functions that themselves are rotationally invariant are

u(r) = −c1r−1 + c2.

The functions log r and r−1 are fundamental solutions to The Laplace equa-
tion 4u = 0 in dimension two or dimension three.
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Poisson's Formula

We are going to use separation of the variable to solve the Dirichlet problem
for Laplace equation in a disk. The solution is represented by the Poisson's
formula.

Let's consider the problem

uxx(x, y) + uyy(x, y) = 0 for x2 + y2 < a2

u = h(θ) for x2 + y2 = a2.

In polar coordinates x = r cos θ, y = r sin θ, the equation is

urr +
1

r
ur +

1

r2
uθθ = uxx + uyy = 0. (1)

So separating variables in polar coordinates: u(x, y) = u(r, θ) = R(r)Θ(θ).
From equation (1), we have ODEs for R and Θ which are

Θ′′(θ) + λΘ(θ) = 0

and

r2R′′(r) + rR′(r)− λR(r) = 0 (2)

for a constant λ.
For Θ we require periodic BCs

Θ(θ + 2π) = Θ(θ) for −∞ < θ <∞.

So we only have positive eigenvalues and a zero eigenvalue.
When λ = 0, we have from the periodic BCs

Θ(θ) = A.

In this case, the solution to the equation (2) is

R(r) = c1 log r + c2.
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The solution u in this case is

u = RΘ = A(c1 log r + c2).

Because of the boundedness of the solution at the origin point where r = 0
and lim

r→0
log r = −∞, we need to let c1 = 0. So

u =
A0

2

in this case for another constant A0.
When λ = β2 > 0, we have from the periodic BCs β = n and

Θ(θ) = A cosnθ +B sinnθ

where n = 1, 2, 3, · · · .
In this case, the solution to the equation (2) is

R(r) = Crn +Dr−n.

The solution u in this case is

u = RΘ = (Crn +Dr−n)(A cosnθ +B sinnθ).

Because of the boundedness of the solution at the origin point where r = 0
and lim

r→0
r−n =∞, we need to let D = 0. So

u = rn(An cosnθ +Bn sinnθ)

in this case for another constant An and Bn.
By linear homogeneity, we have

u(r, θ) =
1

2
A0 +

∞∑
n=1

rn(An cosnθ +Bn sinnθ). (3)

From the boundary condition u(a, θ) = h(θ). The coe�cients are determined
by Fourier coe�cients of the function h(θ). For n = 1, 2, 3, · · ·

An =
1

πan

∫ 2π

0

h(φ) cosnφdφ,

A0 =
1

π

∫ 2π

0

h(φ)dφ

and

Bn =
1

πan

∫ 2π

0

h(φ) sinnφdφ.
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If we plug An, Bn and A0 into u, the series (3) can be summed explicitly.
In fact

u(r, θ) =

∫ 2π

0

h(φ)
dφ

2π
+

∞∑
n=1

rn

πan

∫ 2π

0

h(φ){cosnφ cosnθ + sinnφ sinnθ}dφ

=

∫ 2π

0

h(φ){1 + 2

∞∑
n=1

(
r

a
)n cosn(θ − φ)}dφ

2π
.

Because

ein(θ−φ) + e−in(θ−φ)

2
= cosn(θ − φ),

we have

1 + 2

∞∑
n=1

(
r

a
)n cosn(θ − φ) = 1 +

∞∑
n=1

(
r

a
)nein(θ−φ) +

∞∑
n=1

(
r

a
)ne−in(θ−φ)

= 1 +
r
ae
i(θ−φ)

1− r
ae
i(θ−φ) +

r
ae
−i(θ−φ)

1− r
ae
−i(θ−φ)

=
arei(θ−φ) − 2r2

a2 + r2 − arei(θ−φ) − are−i(θ−φ)
+ 1

=
a2 − r2

a2 + r2 − 2ar cos(θ − φ)
.

So the solution can be written into the form

u(r, θ) =
1

2π

∫ 2π

0

h(φ)
a2 − r2

a2 + r2 − 2ar cos(θ − φ)
dφ.

This formula is known as Poisson's formula.
In the usual (x, y) coordinate, let the point X = (x, y) = (r cos θ, r sin θ) and

X ′ = (x′, y′) = (a cosφ, a sinφ). We have by Law of Cosine

|X −X ′|2 = a2 + r2 − 2ar cos(θ − φ).

The arc length element on the circle is ds′ = adφ. So the Poisson's formula
is also wrriten as

u(X) =
a2 − |X|2

2πa

∫
|X′|=a

u(X ′)

|X −X ′|2
ds′.
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