
Lecture 16

March 11, 2021

1 Convergence theorems

We are going to prove the pointwise convergence of the classical full Fourier
series.

For a C1 function f(x) on (−π, π) the Fourier series is

S(x) =
1

2
A0 +

∞∑
n=1

(An cosnx+B sinnx)

with the coe�cients

An =

∫ π

−π
f(y) cosny

dy

π
(n = 0, 1, 2, · · · )

Bn =

∫ π

−π
f(y) sinny

dy

π
(n = 1, 2, · · · )

The Nth partial sum of the series is

SN (x) =
1

2
A0 +

N∑
n=1

(An cosnx+Bn sinnx).

We want to prove that SN (x) converges to f(x) as N →∞. So the Fouries
series S(x) equals the function f(x) in (−π, π). Replacing the formulas An and
Bn into SN (x), we have

SN (x) =
1

2π

∫ π

−π
[1 + 2

N∑
n=1

(cosny cosnx+ sinny sinnx)]f(y)dy

=
1

2π

∫ π

−π
[1 + 2

N∑
n=1

cosn(x− y)]f(y)dy. (1)

Denote the Dirichlet kernel KN to be

KN (θ) = 1 + 2
N∑
n=1

cosnθ. (2)
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Because of the observation

2 cosnθ sin
1

2
θ = sin(n+

1

2
)θ − sin(n− 1

2
)θ.

Thus we have

KN (θ) = 1 +

N∑
n=1

sin(n+ 1
2 )θ − sin(n− 1

2 )θ

sin 1
2θ

= 1 +
sin(N + 1

2 )θ − sin 1
2θ

sin 1
2θ

=
sin(N + 1

2 )θ

sin θ
2

.

The graph of the Dirichlet kernel KN is

Figure 1: N = 10

Compare this with the heat kernel St(x) =
1

2
√
πt
e−

x2

4t . The graph for St is
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Figure 2: t = 0.001

Letting θ = y− x and using the evenness of KN , formula (1) takes the form

SN (x) =

∫ π

−π
KN (y − x)f(y)dy

2π
.

Notice that by the de�nition of KN∫ π

−π
KN (y − x)dy

2π
=

∫ π

−π
[1 + 2

N∑
n=1

cosn(y − x)]dy
2π

= 1.

Then

SN (x)− f(x) =

∫ π

−π
KN (y − x)[f(y)− f(x)]dy

2π

=

∫ π

−π
sin(N +

1

2
)(y − x) [f(y)− f(x)]

2 sin (y−x)
2

dy

π
.

We have assumed that f(x) has a di�erentiable derivative, so f(x)−f(y)
x−y and

h(θ) = f(y)−f(x)
x−y

x−y
2 sin

(y−x)
2

are continuous functions with respect the variable θ.
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Then

SN (x)− f(x) =
1

π

∫ π

−π
sin(N +

1

2
)(y − x)h(y − x)dy

=
1

π

∫ π−x

−π−x
sin(N +

1

2
)θh(θ)dθ.

Because {Xn(θ)}={sin(n + 1
2 )θ} are an orthogonal set of functions on the

interval (−x, π−x). Hence they are also orthogonal on the interval (−x−π,−x+
π). Due to the least-Square Approximation theorem, if ‖h‖2 = (h, h) < ∞ we
have from Bessel's inequality

∞∑
n=1

(h,Xn)
2

(Xn, Xn)
≤ ‖h‖2.

By direct calculation

(Xn, Xn) =

∫ π−x

−π−x
sin2(N +

1

2
)θdθ = π.

So we have for bigger N ,

(h,XN )→ 0 as N →∞.

Then we check that ‖h‖2 <∞ which is∫ π−x

−π−x
h2(θ)dθ =

∫ π−x

−π−x
[
f(x+ θ)− f(x)

2 sin θ
2

]2dθ <∞.

The above inequality is true because h is a continues function.

Exercise 1. If a period function f(x) itself is only piecewise continuous and
f ′(x) is also piecewise continuous on −∞ < x <∞, prove that for any �xed x

lim
N→∞

|SN (x)− 1

2
[f(x+) + f(x−)]| = 0.

We are going to prove the uniform convergence theorem for classical Fourier
series. We assume again that f(x) and f ′(x) are continuous functions of period
of 2π.

Denote An and Bn are the Fourier coe�cients of f(x) and let A′n and B′n
are the Fourier coe�cients of f ′(x).

We integrate by parts to get

An =

∫ π

−π
f(x) cosnx

dx

π

=
1

nπ
f(x) sinnx|π−π −

∫ π

−π
f ′(x) sinnx

dx

nπ

= −
∫ π

−π
f ′(x) sinnx

dx

nπ

= −B′n.
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Similarly,

Bn = − 1

n
A′n.

Due to Bessel's inequality for the functions f ′(x) that the in�nite series

∞∑
n=1

(|A′n|2 + |B′n|2) ≤ π

∫ π

−π
|f ′(x)|2dx <∞.

1

2
A0 +

∞∑
n=1

(An cosnx+B sinnx) ≤ 1

2
|A0|+

∞∑
n=1

(|An|+ |Bn|)

≤ 1

2
|A0|+

∞∑
n=1

1

n
(|A′n|+ |B′n|)

≤ 1

2
|A0|+ (

∞∑
n=1

1

n2
)

1
2 [

∞∑
n=1

(|A′n|+ |B′n|)2]
1
2

≤ 1

2
|A0|+ (

∞∑
n=1

1

n2
)

1
2 [2

∞∑
n=1

(|A′n|2 + |B′n|2)]
1
2

< ∞.

Here we used the Schwarz inequality for in�nite series:

∞∑
n=1

anbn ≤ (

∞∑
n=1

a2n)
1
2 (

∞∑
n=1

b2n)
1
2 .

So the Fourier series converges absolutely.
Moreover, we have

max|f(x)− SN (x)| ≤
∞∑

n=N+1

|An cosnx+Bn sinnx|

≤
∞∑

n=N+1

(|An|+ |Bn|)

(asN →∞) → 0.

2 The Gibbs phenomenon

Let f(x) be a step function with a jump

f(x) =

{
1 0 < x < π

−1 −π < x < 0.
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Note from the previous discussion, we have

lim
N→∞

|SN (0)− 1

2
[f(0+) + f(0−)]| = 0.

In fact,

SN (0) =
1

2π
[

∫ π

0

sin(N + 1
2 )y

sin y
2

dy −
∫ 0

−π

sin(N + 1
2 )y

sin y
2

dy]

Then

|SN (0)− 1

2
[f(0+) + f(0−)]| =

1

2π

∫ π

0

[
sin(N + 1

2 )y

sin y
2

− 1]dy − 1

2π

∫ 0

−π
[
sin(N + 1

2 )y

sin y
2

− 1]dy

=
1

2π

∫ π

0

2

N∑
n=1

cosnydy − 1

2π

∫ 0

−π
2

N∑
n=1

cosnydy

= 0.

But we are going to prove that for some xN → 0

lim
N→∞

SN (xN ) 6= 0.

Moreover, this limit is 9 percent higher than the jump of the function f .
Here the jump is 2.

This is called Gibbs phenomenon.
Let xN = π

N+ 1
2

, then the partial sum SN is

SN (xN ) =

∫ π

−π
KN (y − xN )f(y)

dy

2π

=
1

2π
[

∫ π−xN

−xN
KN (θ)dθ −

∫ −xN
−π−xN

KN (θ)dθ]

=
1

2π
[

∫ π−xN

−xN

sin(N + 1
2 )θ

sin θ
2

dθ +

∫ xN

π+xN

sin(N + 1
2 )θ

sin θ
2

dθ]

=
1

2π
[

∫ π−xN

π+xN

sin(N + 1
2 )θ

sin θ
2

dθ +

∫ xN

−xN

sin(N + 1
2 )θ

sin θ
2

dθ].

We are going to estimate the above two integrals

1

2π

∫ π−xN

π+xN

sin(N + 1
2 )θ

sin θ
2

dθ → 1

2π

∫ π

π

sin(N + 1
2 )θ

sin θ
2

dθ → 0 as N → 0. (3)
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And

1

2π

∫ xN

−xN

sin(N + 1
2 )θ

sin θ
2

dθ =
1

2π

∫ π

N+1
2

− π

N+1
2

sin(N + 1
2 )θ

sin θ
2

dθ

(letϕ = (N +
1

2
)θ) =

1

π

∫ π

−π

sinϕ

(2N + 1) sin ϕ
2N+1

dϕ

→ 1

π

∫ π

−π

sinϕ

ϕ
dϕ

≈ 1.179. (4)

Combining (3) and (4), we have

lim
N→∞

SN (xN ) ≈ S20(x20) ≈ 1.179 ≈ 9% ∗ 2 + 1.

This is Gibbs's 9 percent overshoot phenomenon.

The graph for SN (x) = (
∫ π
0
−
∫ 0

−π)
sin[(N+ 1

2 )(x−y)]
sin 1

2 (x−y)
dy
2π

Figure 3: N = 20
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