Lecture 16

March 11, 2021

1 Convergence theorems

We are going to prove the pointwise convergence of the classical full Fourier
series.
For a C! function f(z) on (—m,7) the Fourier series is
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S(x) = §A0+Z(Ancosn:s+Bs1nnx)
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with the coefficients
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A, = f(y)cosny—y (n=0,1,2,---)
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B,= | fy)sinny= (n=1,2-)
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The Nth partial sum of the series is

N
Sy(x) = ZAp+ Z(A” cosnx + By, sinnx).
n=1

N =

We want to prove that Sy (z) converges to f(z) as N — oco. So the Fouries
series S(x) equals the function f(x) in (—=, 7). Replacing the formulas A,, and
B, into Sy(x), we have

- N
Sny(z) = % 142 Z(cos ny cos nx + sinny sin nz)| f(y)dy
- n=1
1 [T al
= o [ [+2) cosn(z—y)f(y)dy. (1)
-7 n=1

Denote the Dirichlet kernel K to be

N
Ky(0) = 1—1—22005719. (2)

n=1



Because of the observation
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cosn sm2 = sin(n 2 sin(n 5)0-
Thus we have
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The graph of the Dirichlet kernel Ky is
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Figure 1: N =10

Compare this with the heat kernel S;(z) = 2\}56*%. The graph for S, is
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Figure 2: ¢t = 0.001

Letting 6 = y — = and using the evenness of K, formula (1) takes the form

T d
S = [ Eny-nig
Notice that by the definition of Ky

™
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S~ f@) = [ Knl- )~ 1) 2
" 1 [f(y) — f(2)] dy
= N+ )y — o)~ 2,
[W sin(N + 2)(2! x) 5 sin (ygx) pn
We have assumed that f(x) has a differentiable derivative, so f@)=fy)
_ f)—f=)
o) = 5= 2sin Ly;w)

and
z—y
are continuous functions with respect the variable 6.



Then

Sx(@) = 1) = 1 [ s+ ) - ahly - a)dy
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Because {X,,(0)}={sin(n + )0} are an orthogonal set of functions on the
interval (—xz, m—x). Hence they are also orthogonal on the interval (—z—m, —x+
7). Due to the least-Square Approximation theorem, if |h|? = (h,h) < oo we
have from Bessel’s inequality

= (h, X,)?
SN

(X X))
By direct calculation
m™T—X 1
(X, X)) = / sin?(N + §)¢9d9 =T

So we have for bigger N,
(h,Xy)—0 as N — oo.

Then we check that ||h|? < oo which is
/ h2(0)do = / AR R (C)EFVIPING

e e 2sin 3

The above inequality is true because h is a continues function.

Exercise 1. If a period function f(z) itself is only piecewise continuous and
f/(x) is also piecewise continuous on —oo < x < oo, prove that for any fixed

. 1
Jim |S(@) = 5[fa+) + @) = 0.

We are going to prove the uniform convergence theorem for classical Fourier
series. We assume again that f(x) and f’(z) are continuous functions of period
of 2.

Denote A,, and B,, are the Fourier coefficients of f(z) and let A/, and B,
are the Fourier coefficients of f/(z).

We integrate by parts to get

A, = f(x)cos nmd—x
o ™
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Similarly,
1

Due to Bessel’s inequality for the functions f’(z) that the infinite series
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Here we used the Schwarz inequality for infinite series:

Sab < (LRI R
n=1 n=1 n=1

So the Fourier series converges absolutely.
Moreover, we have

(o]
max|f(z) — Sn(x)] < Z |A,, cosnx + B, sinnz
n=N+1

> ([ Anl+1Bul)

n=N+1
(asN — o00) — 0.
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2 The Gibbs phenomenon

Let f(x) be a step function with a jump

@) = {1 O<zx<m

-1 —a<zxz<O.



Note from the previous discussion, we have

. 1
Jm [Sn(0) = S[f(0+) + £(0-)]] = 0.
—00
In fact,
1, ["sin(N+ 1)y 0 sin(N + 1)y
= — ——dy — ——=—d
Sn(0) 27r[/0 sin § Y /_7r sin & vl
Then
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But we are going to prove that for some xny — 0

lim SN(Z'N) 75 0.
N—o00

Moreover, this limit is 9 percent higher than the jump of the function f.

Here the jump is 2.
This is called Gibbs
Let zy = NL_F%,
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phenomenon.
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then the partial sum Sy is
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We are going to estimate the above two integrals
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And
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Combining (3) and (4), we have
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This is Gibbs’s 9 percent overshoot phenomenon.

The graph for Sy(z) = (f; — fir)
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Sao(x20) = 1.179 = 9% * 2 + 1.
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Figure 3: N =20




