Lecture 14

March 7, 21

1 Orthogonality

If f(x) and g(x) are two real-valued continuous functions defined on an interval $a \le x \le b$, we define their *inner product* to be the integral of their product:

$$(f,g) \equiv \int_a^b f(x)g(x)dx.$$

We'll call f(x) and g(x) orthogonal if (f,g) = 0. No function is orthogonal to itself except $f(x) \equiv 0$. The key observation in each case discussed in Sec. 5.1 is that every eigenfunction is orthogonal to every other eigenfunction.

We are studing the operator $A = -\frac{d^2}{dx^2}$ with some boundary conditions (either Dirichlet or Neumann or \cdots). Let $X_1(x)$ and $X_2(x)$ be two different eigenfunctions. Thus

$$-X_1'' = \frac{-d^2 X_1}{dx^2} = \lambda_1 X_1$$
$$-X_2'' = \frac{-d^2 X_2}{dx^2} = \lambda_2 X_2,$$

where both functions satisfy the boundary conditions. Let's assume that $\lambda_1 \neq \lambda_2$. We integrate to get

$$\int_{a}^{b} (-X_{1}''X_{2} + X_{1}X_{2}'')dx = (-X_{1}'X_{2} + X_{1}X_{2}')|_{a}^{b}.$$
 (1)

This is sometimes called Green's second identity.

- **Case1: Dirichlet.** This means that both functions vanish at both ends: $X_1(a) = X_1(b) = X_2(a) = X_2(b) = 0$. So the right side of (1) is zero.
- **Case2: Neumman.** The first derivatives vanish at both ends $X'_1(a) = X'_1(b) = X'_2(a) = X'_2(b) = 0$. It is once again zero.
- **Case3: Periodic.** $X_j(a) = X_j(b), X'_j(a) = X'_j(b)$ for both j = 1, 2. Again you get zero.

Case4: Robin. $X'_{j}(a) = cX_{j}(a), X'_{j}(b) = cX_{j}(b)$ for both j = 1, 2.

$$-X'_{1}(b)X_{2}(b) + X_{1}(b)X'_{2}(b) = -cX_{1}(b)X_{2}(b) + cX_{1}(b)X_{2}(b) = 0$$

$$-X'_{1}(a)X_{2}(a) + X_{1}(a)X'_{2}(a) = -cX_{1}(a)X_{2}(a) + cX_{1}(a)X_{2}(a) = 0.$$

On the other hand,

$$\int_{a}^{b} (-X_{1}''X_{2} + X_{1}X_{2}'')dx = \int_{a}^{b} (\lambda_{1}X_{1}X_{2} - \lambda_{2}X_{1}X_{2})dx.$$
(2)

Combining Equation (2) and (1), we get in all the above four cases

$$(\lambda_1 - \lambda_2) \int_a^b X_1 X_2 dx = 0.$$

Therefore, X_1 and X_2 orthogonal if $\lambda_1 \neq \lambda_2$.

The right side of (1) is not always zero. For example, X(a) = X(b), X'(a) = 2X'(b).

The right side of (1) is $X'_1(b)X_2(b) - X_1(b)X'_2(b)$ which is not zero.

For any pair of boundary conditions

$$\alpha_1 X(a) + \beta_1 X(b) + \gamma_1 X'(a) + \delta_1 X'(b) = 0$$

$$\alpha_2 X(a) + \beta_2 X(b) + \gamma_2 X'(a) + \delta_2 X'(b) = 0$$
(3)

involving eight real constants. Such a set of boundary conditions is called symmetric if

$$f'(x)g(x) - f(x)g'(x)|_{x=a}^{x=b} = 0$$

for any pair of functions f(x) and g(x) both of which satisfy the pair of boundary conditions (3).

Theorem 1. If you have symmetric boundary conditions, then any two eigenfunctions that correspond to distinct eigenvalues are orthogonal. Therefore, if any function is expanded in a series of these eigenfunctions, the coefficients are determined.

Proof. The first part is obvious from the above argument. If $X_n(x)$ denotes the orthogonal eigenfunctions with eigenvalue λ_n and suppose that ϕ has the following convergent series

$$\phi(x) = \sum_{n} A_n X_n(x).$$

Then

$$(\phi, X_m) = (\sum_n A_n X_n, X_m) = \sum_n A_n(X_n, X_m) = A_m(X_m, X_m).$$

So we have the formula for the coefficients A_m

$$A_m = \frac{(\phi, X_m)}{(X_m, X_m)}.$$

Remark 2. We have so far avoided all questions of convergence.

Remark 3. If there are two eigenfunctions, say $X_1(x)$ and $X_2(x)$, but their eigenvalues are the same $\lambda_1 = \lambda_2$, then they do not have to be orthogonal. For example in the case of periodic boundary conditions $\sin(\frac{n\pi x}{l})$ and $\cos(\frac{n\pi x}{l}) + \sin(\frac{n\pi x}{l})$ are eigenvalues to the operator A with the same eigenvalue $\lambda = \frac{n\pi x}{l}$. They are not orthogonal. But they can be make so by the Gram-Schmidt orthogonalization procedure. The two eigenfunctions $\sin(\frac{n\pi x}{l})$ and $\cos(\frac{n\pi x}{l})$ are orthogonal on (-l, l).

If f(x) and g(x) are two complex-valued functions, we define the inner product on (a, b) as

$$(f,g) = \int_a^b f(x)\overline{g(x)}dx.$$

The bar denotes the complex conjugate. The two functions are called *or*thogonal if (f, g) = 0.

Now suppose that you have the boundary conditions (3) with eight real constants. They are called symmetric (or hermitian) if

$$f'(x)\overline{g(x)} - f(x)\overline{g'(x)}\big|_a^b = 0$$

for all f, g satisfying the BCs.

Note that the set of functions are symmetric in the real sense implies the symmetric in the complex sense.

Theorem 4. Under the same conditions as Theorem 1, all the eigenvalues are real numbers. Furthermore, all the eigenfunctions can be chosen to be real valued.

Proof. If $-X'' = \lambda X$ then $-\overline{X}'' = \overline{\lambda X}$ plus BCs. Now use Green's second identity with the functions X and \overline{X} . Thus

$$(\lambda - \overline{\lambda}) \int_{a}^{b} X \overline{X} dx = \int_{a}^{b} (-X'' \overline{X} + X \overline{X}'') dx = (-X' \overline{X} + X \overline{X}')|_{a}^{b} = 0.$$

But $X\overline{X} = |X|^2 \ge 0$ and X(x) is not allowed to be zero function. So the integral can not vanish. Therefore, $\lambda = \overline{\lambda} = 0$, which means exactly that λ is real.

Then suppose the eigenfunction X(x) is complex, we can write it as X(x) = Y(x) + iZ(x), where Y(x) and Z(x) are real. Then $-Y'' - iZ'' = \lambda Y + i\lambda Z$.

So we get that $-Y'' = \lambda Y$ and $-Z'' = \lambda Z$. The boundary conditions still hold for both Y and Z. It is easy to see that $\overline{X(x)}$ is also a eigenfunctions. So the linear combination of X(x) and $\overline{X(x)}$ can be replaced by the linear combination of Y(x) and Z(x). Thus we can replace the set of complex eigenfunctions X(x)and $\overline{X(x)}$ by the set of the corresponding real eigenfunctions Y and Z. \Box

Theorem 5. Assume the same conditions as in Theorem 1. If

$$|f(x)f'(x)|_a^b \leq 0$$

for all (real-valued) functions f(x) satisfying the BCs, then there is no negative eigenvalue.

Proof. Suppose there is a negative eigenvalue $\gamma < 0$ and eigenfunction such that

$$-X''(x) = \gamma X(x).$$

Then we have that

$$0 > \int_{a}^{b} \gamma X^{2}(x) dx = -\int_{a}^{b} X''(x) X(x) dx = -X'(b) X(b) |_{a}^{b} + \int_{a}^{b} (X')^{2} dx \ge 0.$$

This is a contradiction. Thus there is no negative eigenvalue.

From the previous computation, we have for one dimensional eigenvalue problem

$$X'' + \lambda X = 0$$

in (a, b) with any symmetric BC.

Theorem 6. There are an infinite number of eigenvalues. They form a sequence $\lambda_n \to +\infty$. Moreover, we may list the eigenvalues as

$$\lambda_1 \le \lambda_2 \le \lambda_3 \cdots \quad \to \quad +\infty$$

with the corresponding eigenfunctions

$$X_1, X_2, X_3 \quad \cdots \quad ,$$

which are pairwise orthogonal.

So for any function f(x) on (a, b), its Fourier coefficients are defined as

$$A_n = \frac{(f, X_n)}{(X_n, X_n)} = \frac{\int_a^b f(x) \overline{X_n(x)} dx}{\int_a^b |X_n(x)|^2 dx}.$$

Its Fourier series is the series

$$\sum_{n} A_n X_n(x).$$

2 Three notions of convergence.

Definition 7. We say that an infinite series $\sum_{n=1}^{\infty} f_n(x)$ converges to f(x) pointwise in (a, b) if for each a < x < b

$$|f(x) - \sum_{n=1}^{N} f_n(x)| \to 0 \quad as \quad N \to \infty.$$

Definition 8. The series converges uniformly to f(x) in [a, b] if

$$\max_{a \le x \le b} |f(x) - \sum_{n=1}^{N} f_n(x)| \to 0 \quad as \quad N \to \infty.$$

Definition 9. We say the series converges in the mean-square (or L^2) sense to f(x) in (a, b) if

$$\int_{a}^{b} |f(x) - \sum_{n=1}^{N} f_n(x)|^2 dx \to 0 \quad as \quad N \to \infty.$$

Example 10. Let $f_n(x) = (1-x)x^{n-1}$ on the interval (0,1). Then the partial sums are

$$\sum_{n=1}^{N} f_n(x) = 1 - x^N \to 1 \quad as \quad N \to \infty$$

because x < 1. So $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise to the function $f \equiv 1$. But the convergence is not uniform because

$$\max_{0 \le x \le 1} |1 - \sum_{n=1}^{N} f_n(x)| = 1 \quad as \quad N \to \infty.$$

However, it does converge in L^2 sense

$$\int_0^1 |1 - \sum_{n=1}^N f_n(x)|^2 = \int_0^1 |x^N|^2 dx = \frac{1}{2N+1} \to \mathbf{1} \quad as \quad N \to \infty.$$

Exercise 11. Let $f_n(x) = \frac{n}{1+n^2x^2} - \frac{n-1}{1+(n-1)^2x^2}$ in the interval 0 < x < 1. Prove that

a) $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise to $f \equiv 0$. b) $\sum_{n=1}^{\infty} f_n(x)$ does not converges in mean-square sense to $f \equiv 0$. c) $\sum_{n=1}^{\infty} f_n(x)$ does not uniformly converges to $f \equiv 0$. **Theorem 12.** Least-Square Approximation. Let $\{X_n\}$ be any orthogonal set of functions. Let $\int_a^b |f|^2 dx < \infty$. Let N be a fixed positive integer. Among all possible choices of N constants c_1, c_2, \dots, c_N . The choices of N constants c_1, c_2, \dots, c_N . The choices of N constants c_1, c_2, \dots, c_N .

$$\int_{a}^{b} |f - \sum_{n=1}^{N} c_n X_n|^2 dx$$

is $c_n = \frac{(f, X_n)}{(X_n, X_n)}$ for $n = 1, 2, \dots, N$.

Proof. Denote

$$E_N(c_1, \cdots, c_N) = \int_a^b |f - \sum_{n=1}^N c_n X_n|^2 dx \ge 0.$$
 (4)

So we have

$$E_{N}(c_{1}, \cdots, c_{N}) = \int_{a}^{b} |f(x)|^{2} dx - 2 \sum_{n \leq N} c_{n} \int_{a}^{b} f(x) X_{n}(x) dx + \sum_{n \leq N} \sum_{m \leq N} c_{n} c_{m} \int_{a}^{b} X_{n}(x) X_{m}(x) dx$$

$$= (f, f) - 2 \sum_{n \leq N} c_{n}(f, X_{n}) + \sum_{n \leq N} c_{n}^{2}(X_{n}, X_{n})$$

$$= \sum_{n \leq N} ||X_{n}||^{2} [c_{n} - \frac{(f, X_{n})}{(X_{n}, X_{n})}]^{-1} \sum_{n \leq N} \frac{(f, X_{n})^{2}}{(X_{n}, X_{n})} + (f, f).$$
(5)

So the minimal point of E_N is $c_n = \frac{(f, X_n)}{(X_n, X_n)}$ for $n = 1, 2, \dots, N$. Denote $A_n = \frac{(f, X_n)}{(X_n, X_n)}$, we have the inequality from Equations (4) and (5),

$$(f,f) \geq \sum_{n \leq N} \frac{(f,X_n)^2}{(X_n,X_n)} \geq \sum_{n \leq N} A_n(X_n,X_n).$$

This is known as Bessel's inequality. It is valid as long as the integral of $|f|^2$ is finite.