Lecture 12

March 1, 2021

1 Fourier Series

In this lecture, we are going to find the coefficients in the Fourier series. Let us begin with the Fourier sine series in the interval (0, l)

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l}.$$
 (1)

We will try to find the coefficients A_n . The key observation is the formula

$$\int_0^l \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = 0 \quad if \quad m \neq n,$$

m and n being positive integers.

Proof. There is a trigonometric identity

$$\sin a \sin b = \frac{1}{2}\cos(a-b) - \frac{1}{2}\cos(a+b).$$

The integral equals

$$\int_0^l \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = \int_0^l \frac{1}{2} \cos(\frac{(n-m)\pi x}{l}) - \frac{1}{2} \cos(\frac{(n+m)\pi x}{l}) dx$$

$$= \frac{l}{2(n-m)\pi} \sin(\frac{(n-m)\pi x}{l})|_0^l$$

$$- \frac{l}{2(n+m)\pi} \sin(\frac{(n+m)\pi x}{l})|_0^l$$

$$m \neq n = 0.$$

Suppose ϕ has the Fourier sine series in (0,l) (1). Let's multiply (1) by $\sin(\frac{m\pi x}{l})$ and integrate in the integral

$$\int_0^l \phi(x) \sin \frac{m\pi x}{l} dx = \int_0^l \sum_{n=1}^\infty A_n \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx$$
$$= A_m \int_0^l \sin^2 \frac{m\pi x}{l} dx$$
$$= A_m \int_0^l \frac{1}{2} - \frac{1}{2} \cos \frac{2m\pi x}{l} dx$$
$$= \frac{l}{2} A_m.$$

Therefore,

$$A_m = \frac{2}{l} \int_0^l \phi(x) \sin \frac{m\pi x}{l} dx. \tag{2}$$

That is if ϕ has the Fourier sine series in (0, l) (1), then the coefficients must be given by (2).

Example 1. Let $\phi(x) \equiv 1$ in the interval (0, l). The A_m is

$$A_m = \frac{2}{l} \int_0^l \sin \frac{m\pi x}{l} dx = -\frac{2l}{lm\pi} \cos \frac{m\pi x}{l} \Big|_0^l$$
$$= \frac{2}{m\pi} (1 - (-1)^m).$$

So the Fourier sine series is

$$1 = \frac{4}{\pi} \left(\sin \frac{\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} + \frac{1}{5} \sin \frac{5\pi x}{l} + \cdots \right).$$

Exercise 2. Prove that the formula

$$\int_{0}^{l} \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx = 0 \quad if \quad m \neq n,$$

m and n being nonnegative integers. And

$$\int_0^l \cos^2 \frac{m\pi x}{l} dx = \frac{l}{2}.$$

Suppose that ϕ has the Fourier cosine series in (0, l)

$$\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l},$$

then the coefficients A_n must be given by

$$A_0 = \frac{2}{l} \int_0^l \phi(x) dx,$$

and

$$A_n = \frac{2}{l} \int_0^l \phi(x) \cos \frac{n\pi x}{l} dx.$$

Example 3. The function $\phi(x) \equiv 1$ has a Fourier cosine series with coefficients

$$A_0 = \frac{2}{l} \int_0^l dx = 2,$$

$$A_m = \frac{2}{l} \int_0^l \cos \frac{m\pi x}{l} dx$$
$$= \frac{2}{m\pi} \sin \frac{m\pi x}{l} \Big|_0^l$$
$$= 0$$

for $m \neq 0$. So we have

$$1 = 1 + 0 + 0 + \cdots$$

The full Fourier series, or simply the Fourier seris, of $\phi(x)$ on the interval (-l,l) is defined as

$$\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi x}{l} + B_n \sin \frac{n\pi x}{l}).$$

Exercise 4. Let m, n are positive integers. Prove the following formulas

$$\int_{-l}^{l} \cos \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = 0 \quad for all \quad n, m$$

$$\int_{-l}^{l} \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx = 0 \quad for \quad n \neq m$$

$$\int_{-l}^{l} \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx = 0 \quad for \quad n \neq m$$

$$\int_{-l}^{l} 1 \cdot \cos \frac{n\pi x}{l} dx = 0 = \int_{-l}^{l} 1 \cdot \sin \frac{n\pi x}{l} dx$$

$$\int_{-l}^{l} \cos^{2} \frac{n\pi x}{l} dx = l = \int_{-l}^{l} \sin^{2} \frac{n\pi x}{l} dx$$

$$\int_{-l}^{l} 1^{2} dx = 2l.$$

So the coefficients of the full Fourier series are

$$A_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, \cdots)$$

$$B_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{n\pi x}{l} dx. \qquad (n = 1, 2, 3, \cdots)$$

Example 5. Let $\phi(x) \equiv x$ in the interval (0, l). Its Fourier sine series has the coefficients

$$A_m = \frac{2}{l} \int_0^l x \sin \frac{m\pi x}{l} dx$$
$$= (-1)^{m+1} \frac{2l}{m\pi}.$$

Thus in (0, l) its Fourier sine series is

$$x = \frac{2l}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{2} \sin \frac{2\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} - \cdots \right).$$

Its Fourier cosine series in (0, l) has the coefficients

$$A_0 = \frac{2}{l} \int_0^l x dx = l,$$

$$A_m = \frac{2}{l} \int_0^l x \cos \frac{m\pi x}{l} dx$$

$$= \frac{2l}{m^2 \pi^2} [(-1)^m - 1].$$

Thus in (0, l) its Fourier cosine series is

$$x = \frac{l}{2} - \frac{4l}{\pi^2} \left(\cos \frac{\pi x}{l} + \frac{1}{9} \cos \frac{3\pi x}{l} + \frac{1}{25} \cos \frac{5\pi x}{l} + \cdots \right).$$

Its Fourier series in (-l, l) has the coefficients

$$A_0 = \frac{1}{l} \int_{-l}^{l} x dx = 0,$$

$$A_m = \frac{1}{l} \int_{-l}^{l} x \cos \frac{m\pi x}{l} dx$$

$$= \frac{x}{m\pi} \sin \frac{m\pi x}{l} + \frac{l}{m^2 \pi^2} \cos \frac{m\pi x}{l} \Big|_{-l}^{l}$$

$$= 0,$$

$$B_m = \frac{1}{l} \int_{-l}^{l} x \sin \frac{m\pi x}{l} dx$$

$$= (-1)^{m+1} \frac{2l}{m\pi}.$$

So in (-l, l) its full Fourier series is

$$x = \frac{2l}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{2} \sin \frac{2\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} - \cdots \right).$$

Example 6. Solve the problem

$$u_{tt} - c^2 u_{xx} = 0$$
 $0 < x < l$
 $u(0,t) = u(l,t) = 0$
 $u(x,0) = x, u_t(x,0) = 0.$

From previous Lectures, we know that u(x,t) has an expansion

$$u(x,t) = \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l}) \sin \frac{n\pi x}{l}.$$

Differentiating with respect to time yields

$$u_t(x,t) = \sum_{n=1}^{\infty} \frac{n\pi c}{l} \left(-A_n \sin \frac{n\pi ct}{l} + B_n \cos \frac{n\pi ct}{l} \right) \sin \frac{n\pi x}{l}.$$

Setting t = 0, we have

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{l},$$

and

$$u_t(x,0) = \sum_{n=1}^{\infty} \frac{n\pi c}{l} B_n \sin \frac{n\pi x}{l}.$$

Because the Fourier sine series of x and 0 in (0, l) are

$$x = \frac{2l}{\pi} \left(\sin \frac{\pi x}{l} - \frac{1}{2} \sin \frac{2\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} - \cdots \right)$$

and

$$0 = 0.$$

So $B_n = 0$ and $A_n = (-1)^{n+1} \frac{2l}{n\pi}$. So the solution is

$$u(x,t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2l}{n\pi} \cos \frac{n\pi ct}{l} \sin \frac{n\pi x}{l}.$$